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Abstract

We present a novel approach to finite Rational Inattention (RI) models based
on the ignorance equivalent, a fictitious action with state-dependent payoffs
that effectively summarizes the optimal learning and conditional choices. The
ignorance equivalent allows us to recast the RI problem as a standard expected
utility maximization over an augmented choice set called the learning-proof
menu, yielding new insights regarding the behavioral implications of RI, in
particular as new actions are added to the menu. Our geometric approach is
also well suited to numerical methods, outperforming existing techniques both
in terms of speed and accuracy, and offering robust predictions on the most
frequently implemented actions.
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“It’s much easier not to know things sometimes.”

– Stephen Chbosky, The Perks of Being a Wallflower

1 Introduction

Economists have long sought to model decisions in the face of risk and incomplete
information. In such environments, agents typically seek and acquire information,
and thus effectively shape the uncertainty that they face — but there are few models
describing how they do so.

Introduced by [Sims, 2003], Rational Inattention (RI) has gained increasing accep-
tance as a model of information acquisition and processing, particularly in macroe-
conomics and finance. An agent, facing a menu of actions with uncertain payoffs,
can condition her actions upon any arbitrary signal of the state of nature, but more
informative signals are more costly. In line with the literature [Caplin et al., 2018b,
Matějka and McKay, 2015, Sims, 2003], we assume that signal costs are proportional
to the average reduction in Shannon entropy. The result is an endogenous informa-
tion structure that responds to incentives and changes in the environment and has
been documented to reproduce empirical regularities in a variety of contexts, from
portfolio design to price setting.

However, by and large we still do not know how effective RI models are at ex-
plaining real-world choice data. As noted by Gabaix [2014], the limited scope of
existing applied work is partly due to the conceptual and computational complexity
of RI optimization problems. Outside a handful of special cases, RI models do not
admit a closed form solution. Existing numerical methods are often computationally
intensive and may suffer from accuracy problems. The sheer size of the information
structure — the joint probability distribution of actions and states — often proves
to be an impediment to analyzing and understanding the key findings and relevant
comparative statics.

We present a novel approach to finite RI models that yields important insights
and is highly conducive to numerical solution methods. A key concept throughout the
paper is that of the ignorance equivalent (IE), which we define to be a fictitious action
that, whether added to the original choice menu or implemented unconditionally,
makes the agent no better or worse off. We show that the IE always exists and is
unique. The IE is conceptually similar to the certainty equivalent for choice under
risk, effectively summarizing the most pertinent features of the choice problem.
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By drawing on the concept of the IE, one can transform any finite RI problem into
a standard expected utility maximization. We construct what we term the “learning-
proof menu” from the collection of IEs across all priors. The key observation is
that adding an agent’s IE to the menu never generates new learning opportunities for
herself or any other agent with a possibly different prior. Any agent is thus indifferent
between the original and the learning-proof menu — and since it is always optimal in
the latter to choose the agent’s own IE and forgo learning, the RI problem is effectively
equivalent to a standard expected utility maximization over the learning-proof menu.

The IE and the learning-proof menu also bring structure to the comparative statics
of menu expansion. A single new action is part of the optimal learning scheme if and
only if it is also attractive in combination with the IE alone.1 However, because
actions can be complements when the agent can learn, it is possible that a larger
menu increases the appeal of existing actions [Matějka and McKay, 2015]. As the
menu expands, actions may thus move in and out of the consideration set, i.e. the
support of the optimal choice. We show that actions that are interior to the learning-
proof menu will never be implemented under any menu expansion. Conversely, those
outside the learning-proof menu will be implemented with positive probability when
the right new action is added to the menu.

At the heart of our results is the equivalence between a finite RI problem and
a much simpler convex optimization problem via an explicit transformation of the
payoffs. Intuitively, the transformation accentuates payoff differences across actions
when information is cheap, and attenuates them when information is costly, embody-
ing how the agent spends his limited attention resources. The new formulation, which
we call the Geometric Attention Problem (GAP), operates on a reduced dimension-
ality, is scale invariant, and separates the role of the prior beliefs over states from
the set of feasible choices. The GAP also provides a tight bound on the number of
actions played with strictly positive probability.

We lay out several practical implications from our theoretical results, with an
eye on numerical methods. In particular, we show how to use noisy estimates of
the optimum to construct partial covers, which are subsets of the menu that include
the consideration set with any specified probability, including 1. The method can
be readily deployed to assess computational accuracy in an economically meaningful

1While we express it in terms of the IE, this result is mathematically equivalent to the “market
entry test” of Caplin et al. [2018b].
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way, and to identify the robust behavioral features of the problem. We also present a
notion of distance between choices based on the IE. We argue that the IE distance is
both parsimonious and lends itself as a stopping criterion for numerical estimation,
overcoming some of the shortcomings of alternative metrics.

Overall, the GAP is very well suited for numerical methods. There are plenty
of known algorithms for convex problems that can be deployed for substantial gains
in accuracy and computation time. We provide one such algorithm, adapted from
standard sequential quadratic programming with active set methods.2 Although our
method is relatively unsophisticated, it performs favorably compared with other ap-
proaches, both in terms of speed and accuracy.

Finally, we provide three applications intended to illustrate some of the advantages
of our approach. The first application is based on the price-setting problem of Matějka
[2016]. We document that our algorithm is orders of magnitude faster than the
Blahut-Arimoto algorithm suggested by Caplin et al. [2018b], and scales well with
the size of the action and state spaces. Precision, rather than speed, is the focus
of our second application, based on the two-dimensional portfolio design problem of
Jung et al. [2019]. Our algorithm unveils some behavioral differences of importance.
In both applications, we obtain robust predictions by deploying our characterization
of partial covers and dominated actions, which both prove to be very tight estimates
of the consideration set. Our third application is a novel task assignment problem,
a complex but naturally finite RI problem that is the ideal scenario for the GAP
approach.

Related Literature. Rational inattention was first introduced into economics by
Sims [2003], deploying the ideas of information theory.3 Rational inattention models
rapidly found their way in a variety of fields, from finance to monetary economics.4

Early work on RI models restricted their analysis to Linear-Quadratic Gaussian
(LQG) frameworks, or assumed that the solution was Gaussian as an approximation,
to obtain analytic results that can, in turn, be embedded in an equilibrium model,
and have led to many insights for aggregate phenomena.5

2Source codes are available on GitHub at https://github.com/mmulleri/GAP-SQP.
3Of course, information theory traces back to the groundbreaking work of Claude Shannon and

information economics does to [Stigler, 1961].
4We cannot hope to properly review what is by now a large literature. See Mackowiak et al.

[2018] for a survey of both theoretical and applied work with rational inattention models.
5A necessarily incomplete list of examples is: Peng [2005], Peng and Xiong [2006] and Huang and
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Sims [2006] exhorted researchers to go beyond the LQG case, providing a closed-
form solution for a particular non-LQG case as well. Our applications draw on two
leading examples, Matějka [2016] and Jung et al. [2019], who analyze the full joint
distribution of actions and states in more general settings. Gaglianone et al. [2019]
estimate a dynamic RI model to understand the role of incentives on the accuracy
of financial forecasts. Other researchers have instead sought to develop further the
LQG framework to circumvent some of its shortcomings. Luo et al. [2017] apply
Gaussian techniques with CARA preferences, allowing them to study the dynamics
of consumption and wealth in general equilibrium. Mondria [2010] allows signals to
be linear combinations of the underlying state of the economy, an approach that is
also followed in Kacperczyk et al. [2016], among others. Miao et al. [2019] make
further progress in multi-variate LQG environments.

Alongside applied work, there have been significant theoretical developments ex-
ploring and extending RI problems. Caplin and Dean [2013] and Caplin et al. [2018a]
solve the general finite model using a ‘posterior-based’ approach and mirror the con-
cavification procedure of Gentzkow and Kamenica [2014]; Matějka and McKay [2015]
highlight the structural similarity with multinomial logit models; Caplin and Dean
[2015] broaden the class of RI cost functions beyond Shannon entropy and conduct an
empirical exploration of their validity; and Maćkowiak et al. [2018] explore dynamic
learning in an RI context.

The recent paper by Caplin et al. [2018b] is closely related to our theory results.
Caplin et al. [2018b] provide a set of necessary and sufficient first-order conditions,
as well as a ‘market-entry’ test, which is a simple sufficient statistic that determines
whether a new, currently unavailable action would be incorporated into the consid-
eration set. We re-encounter both results in our formulation of the GAP, which
leads to additional theoretical insights beyond their work, such the concept of the IE
and the construction of the learning-proof menu, as well as the associated results on
computation, convergence and solution bounds.

Paper structure. We start with a simple motivating example to fix ideas. In
Section 3, we formally develop the ignorance equivalent approach and introduce our
mathematical workhorse, the Geometric Attention Problem. In Section 4, we lay out

Liu [2007] for asset pricing; Maćkowiak and Wiederholt [2009] for monetary shocks; Van Nieuwer-
burgh and Veldkamp [2009] and Van Nieuwerburgh and Veldkamp [2010] for home bias and under-
diversification in asset portfolios; or Dasgupta and Mondria [2018] for trade flows.
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Figure 1: Introductory example with four actions (black dots) and two states (on
either axis). The learning-proof menu is drawn in gray, and the ignorance equivalent
of the RI problem, ãRI, is represented by a yellow dot.

the implications from our approach that that may be of more immediate use to applied
researchers. Readers who are primarily interested in the practical takeaways of our
approach may skip the theory developments from Subsection 3.3.1 onward. Section 5
illustrates the relevance of these new tools in three specific applications, and Section 6
concludes. With the exception of some immediate corollaries, all proofs are in the
Appendix.

2 Illustrative Example

To illustrate the basic ideas behind rational inattention and visualize our ignorance
equivalent approach, Figure 1 plots a simple choice problem with two states and a
menu A containing four actions.6 The coordinates of each black dot (ak1, a

k
2) report

the state-specific payoffs from selecting action ak in state i = 1, 2. We first study
three benchmark cases where the information technology is fixed.

A decision maker with no access to information can randomize over actions, but

6For this example, we use menu A = {(0.2, 1.15), (1, 1.1), (1.5, 0.7), (1.7, 0.4)}, uniform prior
π = (0.5, 0.5) and information cost parameter λ = 0.55.
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has to do so independent of the realized state. The yellow area highlights the feasible
set of payoffs. The optimal choice is found via the supporting hyperplane that is
perpendicular to her prior π. The action that generates the corresponding payoffs
(ãNI = a3) is implemented unconditionally. Moreover, the decision maker is indiffer-
ent between the original menu A and the singleton menu

{
ãNI
}
.

A decision maker with free access to full information would first learn the state
and then select the payoff-maximizing action a1 in state 1 and a4 in state 2. Her
expected utility is the same as she would get from unconditionally implementing the
fictitious action ãFI = (a1

1, a
4
2). Yet, adding ãFI to the menu does not make her any

better off either, because it does not increase the achievable utility in either state.
Taken together, these two observations imply that the decision maker is indifferent
between the original menu A, the singleton menu

{
ãFI
}

and the augmented menu
A ∪

{
ãFI
}
. There is no other payoff vector with this property,7 and we refer to ãFI

as the ignorance equivalent (IE) of the choice problem. We chose that name because
of two properties: First, the decision maker would be willing to commit to blind
implementation of ãFI (by picking the singleton menu {ãFI}) rather than ‘pick and
choose’ from the larger menu A ∪

{
ãFI
}
. We refer to this as ‘voluntary ignorance’.

Second, the decision maker is also willing to abandon action ãFI as long as he keeps
access to the original menu A (by selecting menu A rather than {ãFI}). We refer to
this as a ‘will to learn’.

The last benchmark case is a decision maker with free access to a partially in-
formative binary signal. Upon observing realization s ∈ {1, 2}, the decision maker
updates her belief to ρs, and selects the expected-utility maximizing action as. There
is a unique payoff vector ã that achieves the same expected utility overall and does
no better under any posterior, and this fictitious action forms the IE of the choice
problem. The constructive argument naturally extends to higher dimensions and any
signal structure that generates I linearly independent posteriors.

Under rational inattention, the decision maker can choose her signal structure,
but more informative signals are more costly. Under the parameters considered here,
the optimal signal structure is the one we have considered last. Net of utility costs
(indicated by the red arrow), it yields the same utility as the fictitious action ãRI.
We will show that ãRI has the same intuitive properties over the choice problem with

7Formally, the payoffs are uniquely determined by the constraints π · ãFI =
∑I
i=1 πi maxa∈A ai

and ãFI
i ≤ maxa∈A ai ∀i, for any number of states.
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access to a continuum of costly signals as the IEs we have just introduced.
From IEs for various priors, one can construct a learning proof menu Ā as drawn

in gray. It contains the original menu, but we show that it makes the rationally
inattentive decision maker no better off. No matter her prior, the decision maker
would be willing to implement an action from Ā unconditionally. As such, the learning
proof menu essentially transforms the RI problem into a standard expected utility
maximization problem.

3 Theory

We consider the standard Rational Inattention problem where an agent faces a fi-
nite menu of options with state-dependent payoffs and can condition her choice on
arbitrary, but costly signals. More accurate signals are more costly, and we follow
the literature [Caplin et al., 2018b, Matějka and McKay, 2015, Sims, 2003, 2006] in
focusing on information-processing costs that are proportional to Shannon entropy.

3.1 Rational Inattention Problem

Formally, an agent has to implement an action from the finite menu A. Pay-
offs from each action depend on an unknown state of the world. Each state i ∈
{1, ..., I} occurs with positive prior probability πi > 0. No two actions are pay-
off equivalent, and we identify an action a ∈ A by its state-dependent payoffs
(a1, ..., aI) ∈ RI .8 We denote the set of probability mass functions over the menu as
C(A) :=

{
p : A → [0, 1]

∣∣ ∑
a∈A p(a) = 1

}
. Building upon existing results [Matějka

and McKay, 2015, Corollary 1], we do not model the details of the signal-generating
process, and instead assume without loss of generality that the decision maker can
directly select the conditional implementation probabilities P ∈ C(A)I , where Pi(a)

denotes the probability of implementing action a conditional on state i.
The optimal choice maximizes expected utility net of information processing costs,

measured as the average reduction in entropy between prior and posterior. These costs
are also known as the mutual information I(P ,π), and are equal to the expected
Kullback-Leibler divergence between conditional and marginal choice probabilities

8Throughout, we use the convention that v ≥ w if and only if vi ≥ wi ∀i, that v > w if and only
if v ≥ w and v 6= w, and that v � w if and only if vi > wi ∀i.
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[Cover and Thomas, 2012],

I(P ,π) :=
I∑
i=1

∑
a∈A

πiPi(a) ln

(
Pi(a)

pP (a)

)
,

where pP (a) =
∑I

i=1 πiPi(a) refers to the marginal implementation probability of a.9

A proportionality constant λ > 0 translates the informational burden from nats into
utils. Mathematically, the choice problem is parametrized by a triplet (A,π, λ),

W (A,π, λ) = max
P∈C(A)I

I∑
i=1

∑
a∈A

πiPi(a)ai − λI(P ,π). (RI)

When π and λ are considered fixed, we refer to the value function as W (A) for
ease of notation. Clearly, the value function is nondecreasing under menu expansion,
W (A) ≤ W (A′) for all A ⊆ A′, since the agent can always restrict the support of P
to a subset of available actions at no cost.

3.2 Ignorance Equivalent

The central concept of our paper is the notion of an ignorance equivalent (IE) of
a menu A. To describe it, consider first a fictitious action with state-dependent
payoffs α ∈ RI . If the agent is forced to implement this action blindly, his net
utility equals W ({α}). If this option is added to his existing menu, his net utility
equals W (A∪{α}). Voluntary ignorance occurs when α is attractive enough so that
W ({α}) ≥ W (A∪ {α}). Conversely, a will to learn is demonstrated when the agent
weakly prefers the original menu over forced ignorance,W (A) ≥ W ({α}). The payoff
vector is the ‘ignorance equivalent’ of menu A if α elicits both voluntary ignorance
and a will to learn.

Definition 1. An ignorance equivalent of a menuA under prior π and information
cost λ is a payoff vector α ∈ RI such that W (A ∪ {α}) = W ({α}) = W (A).

The notion is analogous to the concept of a certainty equivalent for a lottery.
The certainty equivalent for each lottery is unique, and it decreases with the agent’s
risk-aversion. Similarly, we will show that the IE is unique for any menu A and its

9In line with conventional notation, we assume that 0 ln 0 = 0.
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expected payoff decreases with the agent’s information cost and weakly increases as
new actions are added to A (Corollary 1). It also satisfies a version of the law of
demand with respect to changes in prior (Corollary 5). A simple example highlights
the economic relevance of the IE.

Example 1. Abigail is looking to invest her wealth in one of A different assets, which
pay expected return ai in state of the world i. Being a rationally inattentive agent,
Abigail will typically learn more about the state and improve her investment choices,
but at a cost.

Consider an asset manager who is free to design a fund α that delivers return αi
in state i. The asset manager seeks Abigail’s business, and has no information costs.
When designing the fund, the asset manager realizes that Abigail may first learn some
about the state, and then decide whether to invest in the offered fund—which could
lead the asset manager to miss on some of Abigail’s business and possibly be subject
to adverse selection.

The IE is the answer to all the asset manager’s problems. It ensures that Abi-
gail wants to participate unconditionally and willingly forgoes any learning — thus
enabling the asset manager to extract the maximal information rents. �

The IE is the workhorse that ties together all the results of the paper. We use it as
a “sufficient statistic” that condenses the information needed to identify the optimal
choice and meaningfully compare across choices and menus, both from a theoretically
perspective and for the purposes of numerical methods.

3.3 Geometric Attention Problem

The IE owes much of its power to convex geometry, and to the mathematical equiva-
lence between (RI) and a simpler optimization problem which we call the Geometric
Attention Problem (GAP). The starting point is a component-wise payoff transforma-
tion βi(a) = eai/λ that defines, for each action a, an attention vector β(a) ∈ (0,∞)I .
The mapping accentuates differences in payoffs when the information is cheap, and
attenuates them when is costly.10 The convex hull over all attention vectors spanned

10Formally, consider two actions whose payoffs differ by a factor k = ãi/ai ∈ (0, 1) in state i. If
instead we compare the relative size of the attention vectors, we observe that limλ→0+ eãi/λ

/
eai/λ =

0 and so action ã attracts almost no attention relative to a in state i. For large information costs,
limλ→∞ eãi/λ

/
eai/λ = 1, and so they gather largely equal attention.
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β(a)

B
b∗

∇w(b∗)

∇w(b)

Figure 2: Visual representation of the Geometric Attention Problem. Attention vec-
tors β(A) are drawn as black dots, their convex hull B is indicated in gray. The upper
boundary ∂+B is drawn in blue. Indifference curves for w are drawn as dashed lines.

by A,

B :=

{∑
a∈A

q(a)β(a)

∣∣∣∣∣ q ∈ C(A)

}
⊂ RI

+,

forms an “information possibilities set.” The GAP simply selects the attention vector
b ∈ B that maximizes utility w(b) := π · ln(b),

max
b∈B

w(b). (GAP)

Figure 2 attests to why we call the new problem “geometric.” (GAP) transforms the
menu into the convex polytope B, which allows us to draw upon a vast literature
within convex geometry. (GAP) also separates the role of prior beliefs from that
of payoffs: Prior beliefs π determine the objective function. The attention cost
parameter λ and the action payoffs a determine the feasible set B. This allows us to
isolate the geometric consequences of a change in one parameter.

3.3.1 Problem equivalence

Our first result makes the equivalence between (RI) and (GAP) formal and describes
exactly how the optimal solutions between the two problems relate.

11



Theorem 1. If P ∗ ∈ C(A)I solves (RI), then

b∗ =
∑
a∈A

(
I∑
i=1

πiPi(a)

)
β(a)

solves (GAP), with w(b∗) = W (A)/λ.
Conversely, if b∗ =

∑
a∈A

p(a)β(a) solves (GAP), then P ∈ C(A)I defined as

Pi(a) =
p(a)βi(a)∑

a′∈A p(a
′)βi(a′)

(FONC)

solves (RI).

Proof. See Appendix A.

The conditional choice probabilities (FONC) are obtained from the first order
conditions of the original problem, and have been reported previously [Matějka and
McKay, 2015]. Plugging them back in to the objective function yields an optimization
problem that depends only on the marginals p, but in its pure form restricts the choice
of marginals to a finite subset of C(A) – namely, those that are consistent with at least
one set of conditionals satisfying Equation (FONC). We show that this constraint can
be relaxed, and that the objective can be rewritten as π · β−1

i

(∑
a∈A q(a)β(a)

)
. To

map this (GAP), we scale the objective by 1/λ and apply a simple change of variables.
Since (GAP) is strictly convex, it trivially admits a unique solution b∗, which fully

characterizes the IE α.

Corollary 1 (Ignorance Equivalent). Each (RI) problem admits a unique IE, given
by the pre-image of the corresponding (GAP) solution, α = β−1(b∗). The expected
payoff π ·α weakly increases in the addition of new actions. It also weakly decreases
in the information cost parameter λ, and strictly so whenever the solution to (RI) is
non-degenerate.

Proof. The indifference conditions from Definition 1 require that W (A) = W ({α})
and W (A∪ {α}) = W (A). Stated in terms of (GAP), the first requirement restricts
β(α) to the indifference curve through b∗, while the second restricts β(α) to the
separating hyperplane between the indifference curve and B. The two sets intersect
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only at b∗, and hence the pre-image β−1(b∗) uniquely identifies the IE for any (RI)
problem.

SinceW ({α}) = π ·α = W (A), the comparative statics follow from monotonicity
of the original (RI) problem.

The solution to the original (RI) problem is unique as long as b∗ admits a unique
representation as a convex combination over points in β(A).11 The similarity of the
attention vectors that span b∗ captures the amount of learning that the decision maker
undertakes. In the extreme case where the optimum is spanned by a single action,
b∗ ∈ β(A), the decision maker forgoes learning altogether and blindly implements a
single action. In all other cases, the optimal choice always involves learning. Learning
is largest when β(α) is spanned by wildly different attention vectors, in which case
the agent will closely tailor his action to the realized state. Lemma 2 in the appendix
formalizes the link between the spanning surface and the amount of learning.

It is important to emphasize that merely because b∗ can be written as a convex
combination

∑
a∈A p(a)β(a) does not mean that the decision maker implements an

unconditional lottery. Rather, the decision maker implements the optimal conditional
probabilities P according to Equation (FONC).

3.3.2 Optimality conditions

The simple geometry of (GAP) allows us to succinctly characterize its optimum via
linear inequality conditions.

Theorem 2. The solution to (GAP) is unique and fully characterized by either of
the following two optimality conditions:

(a) ∇w(b∗) · β(a) ≤ 1 for all a ∈ A.

(b) ∇w(b) · b∗ ≥ 1 for all b ∈ B.

Proof. See Appendix A.

Figure 2 captures the geometric intuition for this result: Condition (a) says that B
lies weakly below the hyperplane that is tangent to the indifference curve at b∗. Con-
dition (b) says that b∗ lies above all hyperplanes that are tangent to the indifference
curves at any suboptimal b ∈ B. Both hold thanks to the convexity of (GAP).

11This generates exactly the uniqueness conditions given by Matějka and McKay [2015].
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Both types of optimality conditions are central to our paper. The first set is linear
over the points in the convex hull B. The condition identifies the optimum as the
only point where ∇w(b∗) represents a supporting hyperplane for B. Condition (a) has
been stated before in terms of action payoffs, and forms the backbone for Caplin et al.
[2018b].12 One key observation is that the conditions jointly imply that inequality
(a) binds for any attention vector that spans b∗.

To our knowledge, the second set of optimality conditions are new to the RI
literature. Condition (b) is constructive in the sense that any feasible point b ∈ B
restricts the potential location of b∗ to a linear half-space dictated by the vector
∇w(b). A successive choice of feasible bn ∈ B then allows us to ‘close in’ on the
optimum, and make precise statements about the true optimum based on numerical
estimates.

3.3.3 Consideration set cardinality

In line with Caplin et al. [2018b], we refer to the set of actions that are chosen under
an optimal model P ∗ as the agent’s consideration set support(P ∗) ⊆ A. Since B
is a finitely generated polytope, (GAP) readily generates an upper bound on the
cardinality of the minimal consideration set. Indeed, Carathéodory’s Theorem states
that any point b ∈ conv.hull(β(A)) can be written as a convex combination of at most
I+1 points in β(A).13 The minimal consideration set therefore contains at most I+1

actions. This bound can be further strengthened by using the fact that b∗ is on the
upper boundary ∂+B = {b ∈ B | @b′ ∈ B : b′ > b} by strict monotonicity of w. This
simple intuition for finite type spaces complements the more general treatment of the
cardinality of the consideration set in Jung et al. [2019].

Corollary 2. The minimal consideration set contains at most I actions.

Proof. See Appendix A.

3.3.4 Scale Invariance

The functional form of (GAP) has another separability feature that is particularly
helpful for numerical evaluation: Scaling the feasible set B with a positive constant
along any dimension maintains optimality, even if the objective function is left intact.

12Necessity was highlighted previously by Matějka and McKay [2015].
13See for instance Eggleston [1958, Theorem 18].
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Mathematically, component-wise scaling b 7→ k ⊗ b := (kibi)
I
i=1 merely offsets the

objective value by a constant factor,

π · ln(k ⊗ b) =
I∑
i=1

πi · ln(kibi) = π · ln(b) + π · ln(k).

As a consequence, the optimum scales by the same vector as the feasible set.

Corollary 3 (Axis Scaling). Consider any scaling vector k ∈ RI
+. Attention vector

b solves (GAP) if and only if k ⊗ b solves maxb∈k⊗B w(b).

Proof. Since w(k⊗ b) = w(k) +w(b) for all b ∈ B, w(b∗) ≥ w(b) for all b ∈ B if and
only if w(k ⊗ b∗) ≥ w(b̃) for all b̃ ∈ k ⊗ B.

Scalability greatly helps reduce floating point imprecision in our numerical algo-
rithm. It also captures the fact that shifting a menu by a constant payoff vector, as
in the Minkowski sum A+ {u}, does not affect the relative location of its IE. The IE
shifts by the same vector, to α+u. Indeed, the incentives for learning are unaffected
because the payoff boost is independent from the action choice.

3.3.5 Relation to existing concavification approaches

Previous concavification procedures [Caplin et al., 2018b, Gentzkow and Kamenica,
2014, Kamenica and Gentzkow, 2011] express RI problems in terms of posterior beliefs.
In the standard problem visualization over two states, the horizontal axis corresponds
to posterior beliefs ρ in the likelihood of state 1, and each action defines a curve given
by its expected payoff under posterior ρ, suitably corrected for the fact that extreme
posteriors are more expensive to obtain. The optimal choice can then be characterized
by the posteriors and action curves that locally support the concave upper envelope at
the prior. Clearly, this approach is quite different from the one here, as best illustrated
by Figure 2. Our axes correspond to states, not posteriors, and we represent actions
by attention vectors, not curves.

Nevertheless, there is an intimate connection that arises by combining Corollary 3
and Theorem 2. Indeed, scaling by k = ∇w(b∗) ∈ RI

+ moves the optimum to π
by optimality condition (a) and allows us to express this optimal attention vector as
a convex combination over points that correspond to the agent’s posterior beliefs.14

14To see why, let b∗ denote the optimum over B. Note that ∇w(π) = 1 and hence ∇w(π) ·
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However, while scaling to the simplex offers intuition regarding the possible posterior
beliefs, it has one obvious draw-back: One needs to know the optimal b∗ in order
to determine the scaling of B. For conceptualization, this loop is not tragic – for
computation, it is fatal. One fundamental advantage of our approach is that it yields
a convex optimization problem where both the set of candidate points B and the
objective function w are explicitly defined.

3.4 Learning-Proof Menu

By drawing on the properties of (GAP), the IE approach can also be used to transform
any (RI) problem into a standard expected utility maximization problem over a mod-
ified menu. We achieve this by forming a ‘payoff possibilities frontier’ by collecting
the IEs across priors, and adding any statewise dominated payoffs.

Definition 2. The learning-proof menu generated by menu A under information
cost λ is equal to the set of payoff vectors

Ā :=
{
a ∈ RI

∣∣∃π ∈ ∆I−1 such that π � 0 and απ ≥ a
}
,

where απ denotes the IE of menu A under prior π.

We show that the (RI) agent is always indifferent between A and the larger menu
Ā. Since the learning proof menu Ā does not depend on the agent’s prior, and al-
ways contains its own IE, the agent is essentially solving a standard expected utility
maximization problem over Ā. In addition, the (GAP) geometry allows for a mathe-
matically more concise definition of Ā, and the properties of the IEs generate intuitive
comparative statics. We collect all these results in the following corollary.

Corollary 4 (Learning-proof menu). The learning-proof menu Ā has the following
properties:

(a) Ā is equal to the Minkowski sum β−1(∂+B) + RI
≤0.

(k ⊗ β(a)) =
∑I
i=1 1 · (∇iw(b∗)βi(a)) ≤ 1, meaning π satisfies the optimality conditions (a) over

the set k ⊗ β(A). At the same time, the posterior probability of state i conditional on imple-
menting action a can be written as πiP ∗i (a)/p∗(a) by Bayes rule. By (FONC), this is equal to
βi(a)πi

/(∑
a′∈A p

∗(a′)βi(a
′)
)

= βi(a)∇iw(b∗) = kiβi(a) for any chosen action. In other words, the
posterior is equal to the location of action a’s attention vector after scaling for any action within
the consideration set.
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(b) A ⊆ Ā, and the two menus share the same IE απ ∈ Ā under any prior π.

(c) Ā is closed, bounded above and convex.

(d) Ā is equal to the intersection of halfspaces
⋂
π�0

{
a ∈ RI | π · (απ − a) ≥ 0

}
.

(e) Under the set-inclusion order, Ā is weakly larger when new actions are added
to A or when the information cost parameter λ decreases.

Proof. See Appendix A.

The learning-proof menu owes its name to property (b), which says that the agent
gains nothing from his costly learning opportunities, since Ā always contains its own
IE. This stems from the fact that adding an IE or a statewise dominated payoff vector
to the menu does not affect the upper boundary ∂+B, and so the solutions to (GAP)
remain unchanged under all priors. As a consequence, the learning-proof menu is
an expected utility representation of the (RI) problem since IE α of A is also the
solution to

max
a∈Ā

π · a. (EU)

By Corollary 1 and Theorem 1, this expected utility maximization problem thus
allows us to reconstruct the solution to (GAP) and (RI).

The (EU) representation also allow us to link changes in the prior with changes
in the IE. For example, if an agent sees state i as more likely, at the expense of state
j, then the IE payoff in state i increases while that of state j decreases.

Corollary 5. For any two priors π,ρ� 0, the corresponding IEs απ and αρ satisfy
(απ −αρ) · (π − ρ) ≥ 0.

Proof. Optimality of ασ in (EU) implies σ · ασ ≥ σ · a for σ ∈ {π,ρ} and a ∈
{απ,αρ} ⊆ Ā. Combining the inequalities yields the desired expression.

The learning-proof menu may arise naturally in games with strategic incentives
or robustness consideration. Returning to Example 1, imagine the asset manager
does not know Abigail’s prior, or is seeking investment in a wider population with
heterogeneous beliefs. Is it still possible to ensure participation and capture all the
information rents? Yes, it is. The learning-proof menu is the answer to all the
manager’s problems. By offering a rich menu of funds, it is optimal for Abigail or
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any other agent to self-select her own IE without any learning. Note that same is not
true if the asset manager were unsure of Abigail’s information cost, since then the
learning proof menu strictly increases under the set inclusion order by Corollary 4(e).

3.5 Menu expansion

RI and random utility models can have markedly different behavioral implications of
menu expansion. In a multinomial logit model, for instance, the implementation prob-
ability of an action can be made arbitrarily small by merely adding payoff-equivalent
duplicates of other actions in the menu [Debreu, 1960]. Matějka and McKay [2015]
show that this is not the case under (RI). Intuitively, duplicate actions do not affect
(GAP) and thus do not affect the weight placed on any non-duplicated action.

Moreover, adding a new action never increases the implementation probability of
an existing action in random utility models. Matějka and McKay [2015] show by
example that this is not the case in (RI), because the new action may generate learn-
ing opportunities that render a previously unchosen action attractive under some
posteriors. We expand upon this idea by fully characterizing which actions are im-
plemented with positive probability when added to a menu, either by themselves or
in conjunction with other actions.

Both the IE α and the learning-proof menu Ā are relevant to what happens as
options are added to a menu A. If a single action a+ is added to A, the new action is
implemented with positive probability in all (RI) solutions if and only if the decision
maker strictly prefers {α,a+} to {α}. If other actions are added at the same time,
the learning-proof menu Ā helps us determine whether a+ will be payoff enhancing
or not. If a+ is outside the learning-proof menu Ā, then a+ will be implemented with
positive probability after some menu expansion. Conversely, if a+ is in the interior
of Ā, it will never be implemented no matter what further actions are added to the
original menu.

Corollary 6 (Menu Expansion). For an (RI) problem (A,π, λ), let α denote the IE
and Ā the learning-proof menu. For any a+ ∈ RI , the following hold:

(a) W (A ∪ {a+}) > W (A) if and only if W ({α,a+}) > W ({α}).

(b) W (A′ ∪ {a+}) > W (A′) for some menu A′ ⊇ A if and only if a+ /∈ Ā.

Proof. See Appendix A.
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Part (a) draws upon the optimality conditions in Theorem 2(a), which relate to
the menu only through its IE α. It implies that the IE in some way succinctly
summarizes the entire menu A: Not only do the two menus achieve the same (RI)
payoff, the addition of a new action a+ either enhances the payoff from both menus
or from neither. Caplin et al. [2018b] refer to the underlying mathematical expression
as a ‘market entry test’ for a new action; we state it in terms of the ‘sufficiency’ of
the IE for evaluating new actions.

However, the full menu has a larger potential for learning than its singleton sum-
mary {α}. Whenever an additional action a+ is payoff enhancing, the IE offers only
a lower bound on the value function, W (A∪{a+}) ≥ W ({α,a+}). It is also possible
that even if action a+ is not payoff enhancing in menu A, it may be payoff enhancing
once further actions are added, that is, in a larger menu A′ ⊆ A. The IE simply does
not contain sufficient information to judge whether such a menu A′ exists; but the
learning-proof menu does.

Part (b) says that action a+ is payoff enhancing for at least one menu containing
A if and only if a+ is not contained in the learning-proof menu Ā. We show this by ex-
plicitly constructing an additional action a′ such thatW (A∪{a+,a′}) > W (A∪{a′}),
which implies that a+ is implemented with positive probability in any (RI) solu-
tion. Thus, although we initially constructed the learning-proof menu by considering
changes in prior, the concept thus carries relevant information in situations where the
prior is fixed.

Figure 1 illustrates the distinction between the two situations. If action a+ lies
above the dotted curved line, it satisfies criterion (a): The (RI) agent has an ‘actual’
interest in implementing a+ in some contingencies. If a+ lies between the curved line
and the shaded region, it satisfies only (b): The agent has a ‘potential’ interest in
a+ if further actions are added to the menu. If a+ lies inside the shaded region, it
satisfies neither condition: The agent has no interest in a+ as long as the actions in
A are available.

4 Practical Implications

In this section, we lay out some practical implications from the theory developments
previously exposed. We highlight how our findings prove to be useful for numerical
methods, and include some discussion on algorithm design in the last subsection.
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4.1 Partial cover

Outside of a handful of cases that admit closed-form solutions, solving RI models
requires computation methods which, naturally, are subject to numerical noise. We
show here how to use noisy estimates of the optimum to characterize the consideration
set of the true optimal solution.

We start by defining the notion of a partial cover as a generalization of a consid-
eration set.

Definition 3. A set A ⊆ A is a q-cover of the (RI) problem (A,π, λ) if

I∑
i=1

πi
∑
a∈A

P ∗i (a) ≥ q ∈ [0, 1]

for all optimal P ∗.

The consideration set is always a 1-cover, as are any of its supersets. Ideally, we
hope to identify q-covers with high probability q and with the smallest cardinality
|A| possible. The linear optimality conditions in Theorem 2(b) allow us to generate
a q-cover for the (unknown) optimum from any suboptimal choice b. Formally, we
define the ψ-score z : A×RI

+ → R as z(a|ψ) = ψ ·β(a)− 1, and use it to construct
a q-cover for any choice of q ∈ (0, 1).

Corollary 7. For any b ∈ B and any q ∈ (0, 1), the set

A =

{
a ∈ A

∣∣∣∣ z(a|∇w(b)) ≥ − q

1− q

(
max
a′∈A

z(a′|∇w(b))

)}
⊆ A

is a q-cover.

Proof. Let z̄ := maxa′∈A z(a′|∇w(b)) denote the highest ∇w(b)-score across all ac-
tions. By Theorem 2(b), the optimal choice has a nonnegative expected ∇w(b)-score,∑
a∈A p

∗(a)z(a|∇w(b)) ≥ 0. Trivially, if z̄ = 0, only actions with z(a|∇w(b)) = 0

are implemented in (RI), and these are all contained in A. Otherwise, z̄ > 0 and we
proceed by bounding ∇w(b)-scores above,

0 ≤
∑
a∈A

p∗(a)z(a|∇w(b)) ≤
∑
a∈A\A

p∗(a)

(
− q

1− q
z̄

)
+
∑
a∈A

p∗(a)z̄

= − q

1− q
z̄(1− p∗(A)) + p∗(A)z̄.
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Rearranging terms yields p∗(A) ≥ q.

Corollary 7 can be readily deployed to assess computation accuracy. Let b be
the researcher’s numerical estimate of the optimum and let A be a partial cover with
high q, say 95%, obtained from Corollary 7. The researcher may find that A is pretty
large, perhaps close to the full menu A. This may indicate that computational error
is substantial, particularly if a narrow consideration set was expected due to high
information costs. Alternatively, the researcher may find that A has very few actions
or that, from the perspective of the specific application, actions in A are clustered
around only a handful of relevant values. In this case, the researcher has effectively
identified the key features of the consideration set under the true optimum.

Corollary 7 can also be useful while searching for the right parameters to replicate
a salient fact, say, a particular action a being observed with frequency higher than
10%. The researcher does not need a very precise estimate b of the optimum for each
parameter value: As soon as the 90%-cover excludes the aforementioned action a,
the parameter value can be rejected.

In practice (see Section 5), we find that accurate algorithms yield estimates b that
are very close to the optimal (GAP) solution. The resulting q-covers typically have
small cardinality even when q is close to one, making this approach very attractive
for empirical research.

4.2 Dominated Actions

In many applications, it is even possible to rule out some dominated actions altogether
— effectively finding a 1-cover that is significantly smaller than the menu. Sometimes,
this is trivial: If an action delivers less payoff in each state than a blind lottery over
other actions, it would never be chosen even under full information. By formulating
the RI model as an expected utility problem, Corollary 6(b) extends this logic: Only
actions that are on the boundary of the learning-proof menu are chosen with positive
probability.

We go even one step further by combining numerical estimates and the optimality
conditions in Theorem 2. Jointly, the optimality conditions (a) and (b) imply that
any action with positive support has a ∇w(b∗)-score zero. By restricting the optimal
gradient using numerical estimates, we can bound the feasible scores for some actions
below zero, and thus rule them out for good.
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Practically, the set of all bounding hyperplanes to B + Rn
≤0 is

V̄1 =
{
v ∈ RI

≥0

∣∣ v · β(a) ≤ 1 ∀a ∈ A
}
.

Note that any action that is interior to Ā will satisfy v · β(a) < 1 for all v ∈ V̄1.
By Theorem 2(a), ∇w(b∗) ∈ V̄1. Next, we take a numerical estimate b0, perturb
it slightly along each dimension, and consider the largest feasible attention vector
along the perturbed ray.15 Together, this yields a finite set of near-optimal solutions
B̂ =

{
b0, ..., bI

}
⊂ B. Theorem 2(b) restricts the optimal attention vector b∗ to

B̂ := B ∩
{
b ∈ RI

+ |∇w(bk) · b ≥ 1 ∀k
}
. Since ∇iw(b) = πi/bi is strictly decreasing

in bi, this also restricts ∇w(b∗) to the hypercube

V̄2(B̂) :=
I×
i=1

[
πi

maxB̂ bi
,

πi
minB̂ bi

]
.

By combining the two feasibility constraints, we know that the optimal gradient
∇w(b∗) is contained in V̄1 ∩ V̄2(B̂). We use this to rule out dominated actions.

Corollary 8. For any nonempty subset B̂ ⊆ B, the set

A =

{
a ∈ A

∣∣∣∣∣ max
v∈V̄1∩V̄2(B̂)

z(a|v) ≥ 0

}
⊆ A

is a 1-cover.

Proof. See text.

Computationally, finding dominated actions is significantly slower than finding a
partial cover. Corollary 8 requires solving 2I + |A| linear optimization problems (one
for each bound in V̄2(B̂), and one for each action to maximize z(a|v)) while Corollary 7
relies only on the explicit score computations. Still, the dominated actions approach
is useful in situations where accuracy is paramount.16

Often the researcher may be solving a finite approximation of a more complex
(RI) problem, possibly with a continuous space for actions and states. A caveat is

15Formally, we solve maxk∈R,b∈B k subject to b ≥ k(b0 + εei), where ε > 0 is a small perturbation
scalar and ei denotes the unit vector in dimension i.

16For an even more conservative approach, the threshold for inclusion in A can be chosen slightly
negative to offset the optimality tolerance of the linear program. This increases the cardinality of
A, but fully hedges against numerical imprecision.
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in order in such cases: Any cover obtained with Corollaries 7 and 8 will be specific
to the action grid that is considered, and will rely on a correct characterization of
the state distribution. If A is merely a finite approximation to an infinite choice,
it is possible that unmodeled actions generate learning opportunities that increase
the attractiveness of actions in A.17 Regarding approximations to the state space,
our theory is simply not well suited the assess the accuracy of these estimates. That
said, it appears in practice that the (GAP) approach also provides sensible numerical
estimates when applied to a fine discretization of a continuous (RI) problem.

4.3 Precision metric

Ultimately, the goal of RI models is to rationalize observed patterns of behavior. As
such, the primary object of interest in the optimization problem (RI) is the optimal
conditional choice P ∗. Be it to compare model predictions to empirical data, or to
write a stopping criterion for numerical methods, the researcher eventually needs to
decide when two conditional choices are ‘similar’. As a basis for that call, we here
present a notion of distance based on the IE that is both parsimonious and overcomes
shortcomings of alternative metrics.

Definition 4. The IE distance between choices P ,P ′ ∈ C(A)I is defined as

dIE(P ,P ′) :=

√√√√ I∑
i=1

πi (αP −αP ′)2,

where αQ denotes the implied IE under choice Q, with αQi := β−1
i (E[βi(a)|a ∼ Qi]).

The IE distance is a standard Euclidean distance between the payoff vectors αP

and αP ′ , weighted by the prior probability for each state. The weights ensure that the
distance is unaffected by a payoff-irrelevant splitting of states. Nonnegativity, sym-
metry and the triangle inequality are directly inherited from the standard Euclidean
distance.

17If there are actions that are excluded in the model, perhaps as an approximation, one can rule
out only actions that are interior to the learning-proof menu by dropping V̄2(B̂) from Corollary 8.
By Corollary 6(b), these interior actions are not in the consideration set of any finite menu A′ ⊃ A.
And since the optimal choice over a finite state space always has finite support [Jung et al., 2019],
this extends to arbitrary menus. Practically speaking, we expect this approach to be effective in
situations where the considered menu A is large relative to I.

23



However, the IE distance fails to distinguish between choices that imply the same
IE. From a computational perspective, this may be a satisfactory compromise in the
interest of parsimony. Indeed, we now show that distance dIE provides a suitable
convergence criterion whenever (RI) admits a unique solution. From any sequence of
choices that converge to the solution under dIE, we can then construct choices that
converge both in terms of marginal and conditional probabilities.

Lemma 1. Suppose (RI) admits a unique solution P ∗. For any sequence of choices
{P n} ⊂ C(A)I , let {Qn} be defined from (FONC) as

Qn
i (a) :=

βi(a)
∑I

j=1 πjPj(a)∑
a′∈A βi(a

′)
∑I

j=1 πjPj(a
′)
.

If P n → P ∗ according to dIE, then Qn → P ∗.

Proof. See Appendix B.

The IE distance dIE is ideally suited to serve as stopping criterion for numerical
solution methods, as it penalizes numerical noise whenever it leads to substantial
payoff differences while ensuring that conditional choices converge to the actual opti-
mum. In this sense, the IE distance strikes a balance between other common stopping
criteria: Methods that rely on objective values alone can lead to noisy estimates of
the model’s behavioral implications, since several conditional choices may – and of-
ten do [Jung et al., 2019] – share very similar objective values. At the other end, a
straightforward comparison between the probability vectors P and P ′ or their asso-
ciated marginals p and p′, as in dPr(p, p′) := ‖(p(a)− p′(a))a∈A‖, treats all actions as
equally distinct. However, numerical (RI) estimates over large menus err both along
the extensive — the consideration set — and intensive margin — the probability
distribution. The vector comparison dPr disproportionately penalizes errors on the
extensive margin, while dIE recognizes when consideration sets contain actions with
similar payoff vectors.

4.4 Algorithm design

The geometry of (GAP) lends itself to numerical methods for general finite RI prob-
lems or for discrete approximations to continuous RI problems. Standard algorith-
mic techniques for convex problems perform well, and the reduced dimensionality of
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(GAP) brings obvious gains in performance. We provide an algorithm based on se-
quential quadratic programming and active set methods (see, e.g. Judd [1998]), and
using dIE as a stopping criterion. The codes are available at https://github.com/
mmulleri/GAP-SQP and a detailed explanation of the code is provided in Appendix B.

For discrete approximations to continuous problems, large state and action spaces
are needed. This can routinely lead to memory issues when storing the payoff ma-
trix.18 We address this problem by starting with a coarse grid over actions, and
increasing the grid precision stepwise. At each step, we compute the optimal at-
tention vector bk and then include K actions from the finer grid with the highest
∇w(bk) score. We increase grid precision once the 99% cover stabilizes. When K is
large relative to the optimal consideration set, this approach can approximate large
action spaces without running into memory management issues.19 And while the nu-
merical estimates of the algorithm depend on the path of subgrids, any partial covers
computed in the last round accurately describe the optimal choice over the entire
menu A.

Although the optimization methods we use are relatively unsophisticated, we find
that our algorithm performs favorably when compared to other state-of-the-art tech-
niques that are typically used to estimate (RI) models, both in terms of speed and
accuracy. The methods and ideas can also be combined with other solution methods
to yield further gains in performance.20

5 Applications

In this section, we illustrate by way of example that both the conceptual frame-
work and the computationally tractable algorithm have the potential to expand the
purview of further research. We consider three applications: The first is a monopolist
problem with uncertain demand as proposed by Matějka [2016]. We use this well-
known application to benchmark the GAP-SQP algorithm described in Section 4.4

18In the portfolio optimization (Section 5.2) the associated 3002×3002 payoff matrix would require
64.8Gb of memory.

19Note however that our results are limited to a specific state space. In particular, the output
may not approximate the solution of a continuous state distributions even when the distribution is
discretized over a very fine grid.

20For instance, one may use the Blahut-Arimotho algorithm with a very high tolerance error to
create a starting guess for the GAP-SQL algorithm. Or one may replace the SQP approach with
more advanced convex optimization algorithms.
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against existing methods, focusing primarily on speed. The second is a portfolio
choice problem with a massive state and action space proposed by Jung et al. [2019].
We primarily use it to highlight the precision of GAP-SQP and showcase the more
robust behavioral predictions that we develop in Sections 4.1 and 4.2. The third ap-
plications is a task assignment problem that is novel to the RI literature. It illustrates
that the ideal scenario for the (GAP) approach – finite state spaces coupled with rich
action spaces – arises naturally in economically relevant problems.

5.1 Sticky Prices [Matějka, 2016]

Our first illustration is based on the “rationally inattentive seller” model of Matějka
[2016]. A monopolistic seller has a per unit input cost of 1 and sets the price p facing
an isoelastic demand function whose elasticity, d+1

d
, is a random variable uniformly

distributed. Profits are given by Π(d, p) = p−
d+1
d (p−1), where the demand variable d

is the ex-ante unknown state and the price p corresponds to the seller’s action.21 As
in Matějka [2016], actions and states are discretized. As a benchmark we use a grid of
200×200 points, and we will improve the grid precision to increase the computational
demands of the problem without introducing any further complexity in the model.

For comparison to our base routine described in Section 4.4, we also solve the
model using the Blahut-Arimoto (BA) algorithm, a solution method that originated
in Rate Distortion theory and has recently gained some usage in RI problems. As with
our GAP-SQP algorithm, the BA algorithm is guaranteed to converge to the optimum
and operates with a reduced dimensionality, updating the marginal distribution over
actions. We implement both algorithms in MATLAB.22

Figure 3 documents the running times in seconds across a range of information
costs λ for our benchmark case with a grid of 200 × 200 points. As shown in panel
(a), the GAP-SQP algorithm terminates in less than 0.05 seconds in all runs, with
minimal differences across information costs. The BA algorithm, reported in panel

21The demand variable d is uniformly distributed in
(
1
9 ,

1
2

)
, following Matějka [2016], Section 4.2.

Matějka [2016] assumes a channel capacity constraint rather than information being acquired at a
cost. To match the channel capacity constraint of half a bit we find that we need to set λ = 0.0053.

22We use a desktop computer with 16 GB of RAM and an Intel(R) 3.20 GHz Core i7-8700 processor
on a Windows 10 Enterprise 64-bit operating system. For further discussion of the BA algorithm, see
Caplin et al. [2018b] and Cover and Thomas [2012]. Matějka [2016] instead used proprietary software
AMPL/LOQO to solve for the joint probability distribution. Due to licensing restrictions, we were
not able to use AMPL/LOQO to document running times. A comparable, freely available solver
(IPOPT) was substantially slower and less precise than both the GAP-SQP and BA algorithms.
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Figure 3: Running times across information costs

(b), runs in about one second when information costs are very low—and thus the
solution is very close to the full information benchmark—but is substantially slower
for higher information costs, up to 20 seconds. Both algorithms achieve very similar
objective values, with the GAP-SQP algorithm outperforming by about 10−8.23

Next we ratchet up the computation burden by increasing each grid precision up to
600 points, for a total grid points of 6002 = 360, 000. As shown in Figure 4(a), running
times scale roughly linearly for the GAP-SQP algorithm. Even at a 600 × 600 grid
running times stay well below half a second. Figure 4(b) shows that the BA algorithm
also scales well—though this means that computing times approach two minutes for
the largest grids.

We also compute the set of dominated actions as well as the 95% cover using the
output from our GAP-SQP algorithm. Figure 5 displays the GAP-SQP numerical
solution as solid bars over the full price grid — with insets at two points of the
full support of prices for visibility. The 99% cover is indicated with a dark blue
background. It is identical to the consideration set of the numerical solution. Thus,
even if we had low confidence in the accuracy of the algorithm, we would be able
to conclude that prices outside of this set occur with no more than 1% probability.
Indeed, the main point in [Matějka, 2016] that optimal pricing behavior is discrete,
clustering mass on a comparatively small number of points. This observation can also
be made by looking at the set of non-dominated actions (light blue background): It
shows that the vast majority of prices are not used in any contingency. The validity

23Numerical solutions for λ = 0.0053 are also very similar to those reported in Matějka [2016].
See online Appendix C.1. We thank Filip Matĕjka for sharing his numerical output.
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Figure 5: Partial cover and undominated actions

of the claim does not rely on having found the true optimum of the (RI) problem,
which makes it significantly more robust.

5.2 Portfolio Choice [Jung et al., 2019]

Our second application considers the portfolio choice problem of Jung et al. [2019],
who illustrate that RI can explain low rates of household portfolio rebalancing. In
this problem, an investor with unit wealth designs a portfolio composed of three un-
correlated assets, without restrictions on short sales or overall leverage. The investor
has constant absolute risk aversion (CARA) utility u(x) = −e−αx with risk aversion
parameter α. Asset zero is a safe asset with constant return 1.03. The returns from
risky assets j = 1 and j = 2 are each modeled as the sum of two independent random
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variables around a slightly higher mean return, 1.04 + Zj + Yj. The random variable
Zj

iid∼ N (0, σ2
z) reflects factors that are inherently unforeseeable. The random variable

Yj reflects factors that are not known at the outset, but can be learned at a cost.
Each portfolio (θ1, θ2) ∈ R2 describes an available action, where θj is the position in
risky asset j and θ0 := 1 − θ1 − θ2 is the position on the safe asset. The expected
utility from the portfolio conditional on state Y = (Y1, Y2) is

U(θ,Y ) = E

[
u

(
1.03θ0 +

2∑
j=1

(1.04 + Zj + Yj)θj

)∣∣∣∣∣Y
]
. (1)

We follow Jung et al. [2019] and assume that Y follows a discrete distribution over
a 300× 300 grid that is obtained from a normal distribution N (0, 0.022I) truncated
at three standard deviations. We report results for parameter values α = 1, λ = 0.1

and σz = 0.0173.24

We approximate the continuous menu (θ1, θ2) ∈ R2 by first (without loss of gen-
erality) imposing the upper and lower bounds given by the full-information solution,
and then iteratively doubling the grid resolution using 99% covers until we reach
513× 513 = (29 + 1)2 points.25 Jung et al. [2019] instead use a variant of the Blahut-
Arimoto algorithm that optimizes the points of support at each step of the algorithm.
We refer to this algorithm as JKMS. The algorithms reach a comparable objective
value, with GAP-SQP only mildly outperforming JKMS.26 Both algorithms perform
significantly better than approximating the objective with a second-order polyno-
mial to obtain a Linear-Quadratic Gaussian (LQG) problem (for details, see Online
Appendix C.2),27 an approach that is common in the applied literature.28

Turning to the behavioral implications, Figure 6(a) shows the estimated portfolio
24These parameters correspond to scenario B in Jung et al. [2019]. Although not shown, the

GAP-SQP solution has larger support and achieves a higher objective value than the JKMS solution
in all four parameter scenarios.

25The iterative approach (see Section 4.4 and Appendix B) allows us to handle a large action grid.
However, it does not reduce the memory demands imposed by the large state space. In order to
compute the solution at the same state grid resolution as Jung et al. [2019], we opted to run the
algorithm on a computational cluster.

26The solution published in Jung et al. [2019] closes 0.607153 of the payoff gap between no and full
information, while GAP-SQP closes 0.614877 of the gap. For a comparison of the statewise payoff
distribution across algorithms, see Online Appendix C.2.

27The (continuous) LQG solution closes roughly 0.4843 of the payoff gap between no and full
information.

28Examples of LQG models include Kacperczyk et al. [2016], Luo et al. [2017], Mondria [2010],
Van Nieuwerburgh and Veldkamp [2009, 2010].
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Figure 6: Portfolio distributions under GAP-SQP (blue), JMKS (orange) and LQG
(black). In panel (a), the circle size of each portfolio θ is proportional to the proba-
bility weight p(θ), and the probability that the LQG solution falls between any two
dashed contour lines is equal to 0.2.

choice probabilities across all three algorithms. The LQG solution stands out as
the only continuous solution, but even the two discrete solutions are measurably
different. Jung et al. [2019] caution that their solution method may miss solutions
with a larger support, and this is exactly what we find with GAP-SQP. The main
point in Jung et al. [2019], that portfolio rebalancing is relatively rare, remains valid —
and indeed the consideration set shrinks for higher information costs. Quantitatively,
though, GAP-SQP finds that portfolio rebalancing is substantially more common and,
occasionally, the investor makes small adjustments.

The partial covers displayed in Figure 6(b) allow more robust statements regarding
the true optimum given the state and action grid that we use. Contrary to the JKMS
estimates, it appears that the investor actually rarely takes large short positions
simultaneously on both risky assets. This may be suggestive that the investor looks
for good news rather than bad. Another pattern that arises from Figure 6(b) is that
the RI investor only selects portfolios from a circle, hinting that some further analytic
results are possible — and may help elucidate the relative role of risk aversion and
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information processing costs, for instance.29 Overall, the example illustrates the need
for more robust estimation techniques that not only deliver a ‘better estimate’, but
allow a valid characterization of the true optimal choice.

Figure 7 plots the statewise payoff distribution U(θ,Y )− λI, assuming (θ,Y ) is
distributed according to the numeric solution of GAP-SQP (blue) and the information
cost I is borne unconditionally. For comparison, the figure also draws the payoff
distribution under no information (λ→∞, grey dotted) and free information (λ→ 0,
grey dashed). The IE (pink) yields the same expected utility as the optimal choice,
but – to dissuade learning – it avoids the lowest payoffs in a way that mimics the
full-information distribution.

5.3 Task Assignment

Our last application is designed to illustrate how the GAP geometry is particularly
helpful in RI problems when the action space is naturally large and discrete. A
manager has to assign N workers across three tasks {0, 1, 2}. Either task one or task
two is critical; task zero is never critical and represents dismissal. All but one of the
workers are skilled. The unskilled worker is not productive and prevents a skilled
worker from contributing (if there are any assigned to the same task). Output is thus
determined by the number of skilled workers assigned to the critical task, minus the
unskilled worker if he is also assigned to the critical task, n∗. We assume a simple
form of decreasing returns to scale, letting output be given by the production function

29A more thorough investigation of this conjecture is outside of the scope of this research.
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Φ(n∗) =
∑n∗

n=1 δ
n for δ = 0.9.

Despite its simple description, the task assignment problem generates a complex
optimization problem. There are 2N possible states, indicating which task is critical
c ∈ {1, 2} and the identity of the unskilled worker w ∈ {1, ..., N}. An action is a task
assignment aw for each worker w, that can be summarized as a vector a ∈ {0, 1, 2}N .
There are 3N such vectors, and at least 2N that are optimal under some information
structure.We consider a fully symmetric setup with N = 10 workers, resulting in 20

states and 6124 potential assignments.
Figure 8 summarizes expected output, information flow, and optimal assignment

strategies for a range of information costs λ ∈ [.01, 100]. As information costs increase,
the manager uses four distinct allocation strategies (indicated by letters A to D).

When information costs are low, the manager aims for the full-information so-
lution, dismissing the unskilled worker and assigning everyone else to the critical
task (Strategy A). Initially, she acquires nearly all the information and consistently
achieves the full-information benchmark output Φ(9). As information cost goes up,
the manager occasionally misidentifies the unskilled worker or, with much lower prob-
ability, the critical task.30

When λ reaches a certain threshold, the manager changes tack, sending all workers
to the task that she identifies as critical (Strategy B). Because all learning on workers
is forgone, we see a discrete drop in information acquisition that compensates the
manager for the reduction in expected output due to the unskilled worker.31 Because
the manager is initially very accurate at identifying the critical task, output once
again is near constant at Φ(8)—slightly lower than in the full-information benchmark
output Φ(9). As information costs increase, so does the likelihood of an extreme zero-
output assignment resulting from sending all workers to the misidentified critical task.
Output volatility peaks under this strategy.

Once information costs are high enough, the manager aims to hedge and acquires
little information. The first hedging strategy is to send all but one of her workers to
the task she believes to be critical, but does so with hardly any information on their
skills (Strategy C). This strategy is advantageous because the unskilled worker does
no harm when he is by himself, while the presence of a single skilled worker is useful

30Although not visible in Figure 8(b), there is a small but positive probability of output Φ(0) or
Φ(1) resulting from the critical task been misidentified.

31Strategy A’s expected output decreases with the probability of misidentifying tasks or workers,
while output under Strategy B is affected only by task misidentification, by construction.
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if the critical task is misidentified.32 As information costs increase even further, the
manager assigns an equal number of workers to either tasks (Strategy D), hedging
output as much as possible. What little information she still gathers concerns both
the worker and the task, but expected output quickly approaches the no-information
benchmark.

6 Conclusion

Rational inattention offers a promising research agenda that recognizes that economic
agents interact with, and shape, their information environment. As advocated by
Sims [2006], researchers need to go beyond the linear-quadratic case if RI models are
to be of use for applied work. Notwithstanding recent progress, the sheer size of the
information structure that results from RI models can bring substantial challenges,
both conceptual and computation.

We hope our contributions here advance our understanding, as well as our ability
to solve, RI models. The concept of the ignorance equivalent can effectively summarize
the solution to a RI problem, with appealing properties for comparative statics as well
as zero-sum games. It also forms the basis for the learning-proof menu, which recasts
the RI model in the familiar framework of expected utility maximization. We have
also provided an extended toolkit for numerical methods, with a focus to methods that
allow a researcher to check the accuracy of the computed solution. More broadly, we
hope that the GAP problem proves a fertile ground for expertly-designed algorithms
that enable more complex RI models.

There remains important progress to be made in RI models for applied work. A
key issue is how to assess RI models empirically. Recent progress by [Caplin et al.,
2018a] outlines the kind of ideal dataset that would allow to recover information costs.
However, we still do not know how to bring RI models to real-world data, and how
to evaluate the resulting fit against, say, rational-agent models with incomplete, but
static, information; or behavioral alternatives.

32To an outside observer, firm output is most unpredictable over this range, as output entropy
peaks under this strategy.
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Appendix

A Proofs of Theoretical Results

Proof of Theorem 1:

We establish the equivalence between (RI) and (GAP) by means of a relaxed
problem, where the decision maker can separately choose the marginals p ∈ C(A) and
conditionals P ∈ C(A)I , yielding

max
p∈C(A),P∈C(A)I

I∑
i=1

∑
a∈A

πiPi(a)ai − λ
I∑
i=1

πiDKL(Pi ‖ p) , (2)

and DKL(Pi ‖ p) denotes the Kullback-Leibler divergence between Pi and p.

To show the equivalence with (RI), assume pair p,P solves (2). Let pP =∑I
i=1 πiPi. Then

λ
I∑
i=1

πi
(
DKL(Pi ‖ p)−DKL

(
Pi
∥∥ pP )) = λDKL

(
pP
∥∥ p) ≥ 0,

with strict inequality whenever p 6= pP . Thus optimality of p,P requires p = pP , and
thus the relaxed problem (2) has the same optimal value and optimal conditional P
than (RI).

For equivalence with (GAP), assume pair p,P solves (2). The necessary first order
conditions to (2) imply

πiai − λπi ln
(
Pi(a)

p(a)

)
− λπi = µi,

where µi denotes the Lagrange multiplier associated with the constraint
∑
a∈A Pi(a) =

1. Re-arranging and solving for µi shows that optimality of p,P implies that P sat-
isfies (FONC) given p. Thus without loss of generality we can write (2) exclusively
in terms of marginals p ∈ C(A),

max
p∈C(A)

λ

I∑
i=1

πi ln

(∑
a∈A

p(a)βi(a)

)
. (3)
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For any p ∈ C(A) we have b =
∑
a∈A p(a)βi(a) ∈ B; and for any b ∈ B there is at

least one p ∈ C(A). To complete the equivalence with (GAP), note that the objective
function in (3) is simply λw(b).

Proof of Theorem 2: Since w is strictly concave over a convex domain B, it admits
a unique maximum. We first show that the optimum b∗ necessarily satisfies both
conditions. Indeed, consider any b ∈ B \ {b∗} and let η : [0, 1] → B be defined as
η(t) = tb∗ + (1− t)b. The function w ◦ η is strictly increasing: If t < t′, then

(w ◦ η)(t′) >
t′ − t
1− t

w(η(1)) +
1− t′

1− t
w(η(t)) ≥ (w ◦ η)(t),

where the first inequality follows from strict concavity of w and the second from
optimality of b∗, as w(η(1)) = w(b∗) ≥ w(η(t)). Since the derivative of (w ◦ η) is
equal to ∇w(η(t)) · (b∗ − b), and ∇w(b′) · b′ = 1 for all b′ ∈ B, the nonnegativity of
(w ◦ η)′(1) yields condition (a) and the nonnegativity of (w ◦ η)′(0) yields (b).

We show sufficiency through the contrapositive: If b∗ is not optimal, then it
satisfies neither condition. Let b equal the true optimum and define η(t) as above.
The function (w ◦ η) is now strictly decreasing since for any t < t′,

(w ◦ η)(t) ≥ t′ − t
t′

w(η(0)) +
t

t′
w(η(t′)) > (w ◦ η)(t′),

since w(η(0)) > w(η(t′)) by uniqueness of the optimum. At t = 1, the condition
(w ◦ η)′(t) < 0 violates (a) and at t = 0 it violates (b).

Lemma 2 (Learning). Assume menus A1 and A2 have the same IE α and each admit
a unique optimal conditional choice P 1 and P 2. Let B1 and B2 denote the convex
hull of their β-images.

If B1 ∩
{
b ∈ RI

+ |∇w(β(α)) · b = 1
}
⊆ B2, then I(P 1,π) ≤ I(P 2,π).

Proof. By Theorem 1, the optimal marginals p1 and p2 correspond to the weights in
the convex combination that describes β(α). Together with the first order condition
(FONC), this simplifies mutual information to

I(P k,π) =
I∑
i=1

∑
a∈Ak

πip
k(a)h

(
βi(a)

βi(α)

)
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for h(x) = x ln(x). By Theorem 2, actions that are implemented with positive prob-
ability map into hyperplane Hα :=

{
b ∈ RI

+ |∇w(β(α)) · b = 1
}
. The condition

B1∩Hα ⊆ B2 therefore implies that each β(a) with p1(a) > 0 can be written as a con-
vex combination over points in β(A2). We write this as β(a) =

∑
ã∈A2 w(a, ã)β(ã).

This allows us to express the IE as

β(α) =
∑
a∈A1

p1(a)
∑
ã∈A2

w(a, ã)β(ã)︸ ︷︷ ︸
β(a)

=
∑
ã∈A2

∑
a∈A1

p1(a)w(a, ã)︸ ︷︷ ︸
q(ã)

β(ã).

Since the optimal choice in menu A2 is unique, so are the weights q by Theorem 1,
implying that q(ã) = p2(ã) for each ã ∈ A2.

Since h is strictly convex, Jensen’s inequality allows us to conclude that

I(P 1,π) =
I∑
i=1

πi
∑
a∈A1

p1(a)h

(∑
ã∈A2

w(a, ã)
βi(ã)

βi(α)

)

≤
I∑
i=1

πi
∑
ã∈A2

∑
a∈A1

p1(a)w(a, ã)︸ ︷︷ ︸
p2(ã)

h

(
βi(ã)

βi(α)

)
= I(P 2,π).

In other words, P 1 is more informative regarding the state than P 2.

Proof of Corollary 2: By Theorem 2, the optimal attention vector b∗ can be written
as a convex combination over points in

B = {β(a) | a ∈ A,∇w(b∗) · β(a) = 1} .

Since B is contained in a I − 1-dimensional vector space, Carathéodory’s Theorem
implies that b∗ can be written as a convex combination over at most I points. By
Theorem 1, these weights correspond to the marginal implementation probabilities in
a solution to (RI), and their support therefore describes a consideration set.

The next result establishes that it is without loss of generality to assume that a
bounding hyperplane that binds somewhere in

∂+B = {b ∈ B | @b′ ∈ B : b′ > b}
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has only positive coordinates. We use it to restrict attention to priors with full support
in Corollary 4 and Corollary 6.

Lemma 3. Let B = Y + RI
≤0 for a nonempty and convex set Y ∈ RI .

(a) Whenever ψ ∈ RI satisfies ψ · b ≤ 1 ∀b ∈ B, then ψ ≥ 0.

(b) Suppose Y = conv.hull(X) for a nonempty and finite set X ∈ RI
+.

For any b0 /∈ B, ∃ψ � 0 such that ψ · b0 > 1 and ψ · b ≤ 1 ∀b ∈ B.

For any b0 ∈ ∂+B, ∃ψ � 0 such that ψ · b0 = 1 and ψ · b ≤ 1 ∀b ∈ B.

Proof. By contradiction, assume ψi < 0 for some i. Then there exists a unit vector
ei and scalar t > 0 large enough such that ψk · (−tei) = −tψki > 1 for t large enough,
despite the fact that −tei ∈ B for all t > 0. This establishes part (a).

For part (b), the assumption that Y = conv.hull(X) for a nonempty and finite set
X ∈ RI

+ implies B is a polyhedral set. It can then be written as the intersection of
finitely many half spaces (see e.g. Ziegler [2012, Theorem 1.2])

B =
K⋂
k=0

{
y ∈ RI | ψk · y ≤ 1

}
. (4)

By part (a), ψk ≥ 0 for all k.
Any b0 /∈ B violates ψk · b0 ≤ 1 for at least one k; without loss of generality let

ψ0 · b0 > 1. By continuity, there exists ε > 0 small enough such that ψ · b0 > 1 for
ψ := (1 − ε)ψ0 + ε

(
1
K

∑K
k=1ψ

k
)
. However, note that ψ � 0 since B is bounded

above, and

ψ · b = (1− ε)ψ0 · b+ ε

(
1

K

K∑
k=1

ψk · b

)
≤ (1− ε) + ε = 1

for any b ∈ B by Equation (4).
For any b0 ∈ ∂+B, let K̄ ⊆

{
ψ0, ...,ψK

}
denote the nonempty set of half-spaces

that are binding at b0. Clearly, ψ = |K̄|−1
∑

k∈K̄ ψ
k ≥ 0 satisfies ψ · b0 = 1 and

ψ · b ≤ 1 for all b ∈ B. If ψi = 0, then there exists ε > 0 small enough such that
b0 + εei ∈ B by Equation (4), contradicting the initial assumption that b0 ∈ ∂+B.
Hence, ψ � 0.
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Proof of Corollary 4: We prove each claim in turn.

(a) We show first that the upper boundary ∂+B is equal to the set of solutions to
(GAP) across all π � 0. By the strict monotonicity of w it is immediate that
if b0 solves (GAP) for some π � 0, then b0 ∈ ∂+B. Conversely, any point
b0 ∈ ∂+B solves (GAP) for some π � 0. Indeed, by Lemma 3, there exists a
vector ψ � 0 such that ψ · b ≤ 1 for all b ∈ B and ψ · b0 = 1. The vector
π = ψ ⊗ b0 denotes a valid prior since π � 0 and

∑I
i=1 πi = ψ · b0 = 1.

By construction, ψ = ∇w(b0) under π, and thus b0 solves the corresponding
(GAP) problem by Theorem 2(a).

By Corollary 1, it follows that {απ | π � 0} is equal to β−1(∂+B), and the
Minkowski sum with RI

≤0 adds all weakly dominated payoff vectors to complete
Definition 2.

(b) If a ∈ A, then there exists b0 ∈ ∂+B such that β(a) ≤ b0 ∈ ∂+B, and thus by
(a) it follows A ⊆ Ā.

For the second part, let B̄ = β(Ā). By (a) and monotonicity of β, ∂+B̄ = ∂+B
and trivially the solution to (GAP) is the same for A and Ā. The result follows
from the uniqueness of the IE by Corollary 1.

(c) By continuity and statewise monotonicity of β, Ā is closed and bounded above.
It is strictly convex since B is convex and β−1 is statewise strictly concave.

(d) Let a ∈ Ā. For any π � 0, the agent is indifferent between Ā and {απ} by
part (b). Since blind implementation of a requires zero information cost, the
expected utility π · a can be no larger than that of απ. Hence a belongs to
A :=

⋂
π�0{a ∈ RI | π · (aπ − a) ≥ 0}.

Conversely, suppose a /∈ Ā. Since Ā is closed and convex by part (c), the
separating hyperplane theorem implies that there exists ψ ∈ RI such that
ψ · a > 1 and ψ · a′ ≤ 1 for all a′ ∈ Ā. By Lemma 3(a), this implies in
particular that ψ ≥ 0. Letting ρ = 1

I
1 denote the uniform prior, note that by

continuity, there exists ε > 0 small enough such that

ψ̃ =
ψ + ερ

1 + ε(ρ ·αρ)
� 0
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also satisfies ψ̃ · a > 1. The vector π = ψ̃/(ψ̃ · 1) thus forms a valid prior
(π · 1 = 1) with full support (π � 0). Moreover, ρ · a′ ≤ ρ ·αρ for all a′ ∈ Ā
since Ā and A share the IE αρ. Together, this implies that

ψ̃ · a′ = ψ · a′ + ε(ρ · a′)
1 + ε(ρ ·αρ)

≤ 1 + ε(ρ ·αρ)
1 + ε(ρ ·αρ)

= 1 ∀a′ ∈ Ā,

and thus π · (απ − a) < 0, or a /∈ A.

(e) The comparative statics follow from those of the IE in Corollary 1. Indeed, by
Corollary 1, απ weakly increases coordinate-wise for each prior π when new
actions are added or information costs decrease. Thus, the same is true for the
halfspaces defined in part (d), as well as their intersection Ā.

Proof of Corollary 6: Property (a) is a direct consequence of Theorem 1(a). An
additional action a+ alters the solution to (GAP) if and only if

∇w(β(α)) · β(a+) > 1,

referring to A only through its IE α.
For property (b), suppose a+ ∈ Ā. By Corollary 4(a) and statewise monotonicity

of β, there exists b0 ∈ ∂+B such that b0 ≥ β(a+). Since B is weakly increasing in
the addition of new actions, b0 remains a feasible attention vector under any larger
menu A′ ⊇ A. Moreover, any feasible attention vector b under menu A′ ∪ {a+} can
be written as b = p(a+)β(a+) +

∑
a∈A′ p(a)β(a) for some p ∈ C(A′ ∪ {a+}). Note

that
b ≤ b1 := p(a+)b0 +

∑
a∈A′

p(a)β(a),

where b1 is feasible under menu A′. By monotonicity of w, w(b1) ≥ w(b), and so the
addition of a+ does not increase the optimal (GAP) objective value. By Theorem 1,
the same is true for (RI).

Conversely, suppose a+ /∈ Ā. By Lemma 3, there exists ψ � 0 such that ψ ·
β(a+) > 1 and ψ · β(a) ≤ 1 for all a ∈ Ā. Let b1 ∈ RI

+ be defined component-wise
as b1

i := (ψ · β(a+)) πi
ψi
. Since b1 � 0, there exists ε > 0 small enough such that

b2 := (1 + ε)b1 − εβ(a+)) � 0. Labeling the pre-image a2 := β−1(b2) and setting
A′ := A ∪ {a2}, we complete the proof by showing that W (A′ ∪ {a+}) > W (A′).
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By construction, b1 ∈ B+ := conv.hull(β(A′ ∪ {a+})) and b1 satisfies the optimality
conditions from Theorem 2(a) over B+ since

∇w(b1) · β(a) =
ψ · β(a)

ψ · β(a+)
< 1 ∀a ∈ A, (5)

∇w(b1) · β(a+) =
ψ · β(a+)

ψ · β(a+)
= 1 (6)

∇w(b1) · β(a2) = (1 + ε)∇w(b1) · b1︸ ︷︷ ︸
=
∑I
i=1

πi
b1
i

b1i=1

−ε∇w(b1) · β(a+)︸ ︷︷ ︸
=1 by (6)

= 1. (7)

By Theorem 1, this implies that W (A′ ∪ {a+}) = λw(b1). The strict inequality
in (5) implies that ∇w(b1) · b < 1 for any b ∈ B′ \ {b2}, ruling out b1 ∈ B′ since
∇w(b1)·b1 =

∑I
i=1

πi
b1i
b1
i = 1 by definition of w. Since the solution to (GAP) is unique,

it follows that w(b) < w(b1) for all b ∈ B′, and hence W (A′) < W (A′ ∪ {a+}).

B Derivation of Practical Implications

Proof of Lemma 1: Consider any convergent subsequence P nk → P̄ . Since P n

converges to P ∗ under dIE, we know that β(αP̄ ) = β(αP
∗
). Since the solution to

(RI) is unique, this point can be written in a unique way as a convex combination
over β(A).33 This implies that the marginals pnk =

∑I
i=1 πiP

k
i converge to p∗ =∑I

i=1 πiP
∗
i . If all convergent subsequences of the bounded sequence pn converge to

the same limit p∗, the Bolzano-Weierstrass theorem implies that pn itself converges to
p∗. By continuity of Equation (FONC), the convergence translates to the conditional
choice Qn → P ∗.

Algorithm Our base routine for small to moderate menus works as follows: We
make use of the scaling property (Corollary 3) to avoid floating point imprecision,
and store the normalized attention vectors in a I-by-|A| matrix with entries Bia =

βi(a)/maxã∈A βi(ã). Starting with an initial guess p0,34 we iteratively solve a second-

33See the accompanying discussion on Page 13.
34Practically, we use the full-information marginals by placing weight πi on arg maxa∈Aai.
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order Taylor approximation to (GAP), which after dropping constant terms yields

qk := arg maxp∈∆|A|−1

1

2
pTBTHBp− 2∇w(Bpk)TB,

where H refers to the diagonal matrice with entries Hii = πi/(Bp
k)2
i .35 If ∇w(Bqk) ·

pk ≤ 1, we set pk+1 := qk and move to the next iteration. Otherwise, we find the
optimal marginals pk+1 along the segment

{
tpk + (1− t)qk

∣∣ t ∈ [0, 1]
}
by identifying

the root of the monotone function ∇w(tpk + (1− t)qk) · (qk − pk).
We repeat this quadratic approximation until the implied IE converges, i.e. until

dIE(P k,P k+1) < ε, where P k is defined from pk according to (FONC). As default,
and in all our applications, we use tolerance parameter ε = 10−12. By construction,
our approach ensures that the objective value w(Bpk) increases with each iteration.

When the action space is rich, the attention matrix B can require a lot of memory.
To avoid this limitation, we first apply the base routine to a coarse subgrid of the
menu, A0 ⊂ A. Upon convergence, we denote the estimated marginals by q0 and
its associated attention vector as b0 = B0q0. At each iteration m, we compute the
bm−1-scores over a finer subgrid Am ⊇ Am−1. We add the actions with the highest
score until the menu reaches some maximum size K or contains all actions in some
p-cover of menu Am. As long as K is large enough, the p-cover eventually stabilizes,
and we move to the next finer subgrid. We continue this process until Am = A and
the p-cover stabilizes.
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C Online Appendix

C.1 Sticky Prices [Matějka, 2016]

Additional Figures. Both the GAP-SQP and BA algorithms replicate the results
in Matějka [2016] very closely. Figure 9 shows the marginal distributions over prices
for the GAP-SQP algorithm (panel (a)) and BA algorithm (panel(b)), together with
the numerical solutions from AMPL provided by Filip Matĕjka. Solutions are so
close that we had to offset the histograms for visibility. We find that increasing grid
precision for actions does not meaningfully alter the solution.

(a) GAP-SQP algorithm
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(b) Blahut-Arimoto algorithm
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Figure 9: Replication of Matějka [2016]

Figure 10 reports the differences in the objective function value, at the computed
maximum, between the GAP-SQP and BA algorithms, for the benchmark case. The
difference is positively thorough all the information values, indicating that the GAP-
SQL algorithm achieves greater precision despite running on a fraction of the time
of the BA algorithm. The difference, though, is very small by our choice of stopping
values.

C.2 Portfolio Choice [Jung et al., 2019]

Derivation of the LQG solution. Because of the properties of the CARA utility
function, it is possible to rewrite Equation (1) as

U(θ,Y ) = − exp

(
−α

(
1.03 +

2∑
j=1

(0.01 + Yj)θj

)
+
α2

2
(θ2

1 + θ2
2)σ2

z

)
.
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Figure 10: Objective function: GAP-SQP minus Blahut-Arimoto algorithm

We now construct a second-order approximation of this objective function around θ̂
such that

∇θU(θ̂,0) = 0 ⇐⇒ θ̂ ≈ (33.4124, 33.4124)

i.e., those portfolio shares that would be optimal if evaluated at the ex-post realization
Y = 0. Note this is not the same as the no-information solution because it does not
take into account the risk associated with Y .

Because E[Y ] = 0, the second-order Taylor approximation around (θ̂,E[Y ]) equals

Ũ(θ,Y ) = U(θ̂,0) +

(
θ − θ̂
Y − 0

)T

∇U(θ̂,0) +
1

2

(
θ − θ̂
Y − 0

)T

∇2U(θ̂,0)

(
θ − θ̂
Y − 0

)
.

The LQG approximation seeks to design a random variable, θ, to maximize

max
θ

Eθ,Y

[
Ũ(θ,Y )

]
− λI(θ;Y )

Cover and Thomas [2012] document a well-known solution to this problem: We
simply set set θ to be jointly normal with Y . This follows from the fact that a
Gaussian distribution maximizes entropy for a fixed variance. It is not hard to see
that, given the choice of approximating point, the optimal mean is just θ̂. Given
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this, we need only solve for covariance matrix, Σ, that optimally balances smaller
conditional dispersion against information costs.

We can simplify the objective dropping the linear terms, since they do not depend
on the covariance matrix. We can then simplify further using a couple of well-known
facts: First is the functional form for the mutual information of a pair of multivari-
ate normals, which has a simple closed-form expression; second is for any random
variables X1 and X2,

E[XT
1 AX2] = tr(ACov(X1,X2)) + E[X1]TAE[X2],

Plugging these in implies that solving the RI problem is tantamount to selecting a
positive-definite Σ that is consistent with the marginal distribution over Y so as to
maximize

1

2
tr
([

∇2U(θ̂,0)
]

Σ
)
− λ1

2
log

(
|Σθ| × |ΣY |
|Σ|

)
where | · | denotes the matrix determinant and ΣX denotes the marginal covariance
of the X.

Plugging in the optimal covariance matrix

Σ =

[
Σθ ΣθY

ΣY θ ΣY

]
=


3158.4 0 0.9453 0

0 3158.4 0 0.9453

0.9453 0 0.0004 0

0 0.9453 0 0.0004


yields the distribution found in Figure 6(a). The objective function net of information
costs is derived using Monte-Carlo methods. We take 10 million draws from the
optimal distribution and compute the sample average utility. We repeat this 100
times and take sample statistics of the estimates. This yields an average payoff, net
of information costs, of −.3220 with a 95% confidence band of [−.3221,−.3219].

Additional Figures. For comparison purposes, Figure 11 plots the statewise payoff
distribution U(θ,Y ) − λI, assuming (θ,Y ) is distributed according to the numeric
solution of GAP-SQP (blue) or JKMS (orange), and the information cost I is borne
unconditionally.
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Figure 11: Payoff distribution across algorithm estimates, smoothed with a kernel
density estimate.
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