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Abstract

We build a continuous-space theory of trade in which people in

a region agglomerate to exploit trading opportunities with another

region. The regions are separated by a river, which can be crossed

anywhere, but more cheaply at bridges. In the model, most trade

takes place via bridges, leading to a key prediction that population

density declines with distance to the bridge. We derive additional

predictions about the spatial distribution of population and test them

on high-resolution population density data around six major American

rivers. The data are mostly consistent with our model. More generally,

our results suggest that economies of density arising from transport

infrastructure can help explain why and where people agglomerate.
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1 Introduction

People agglomerate in cities to exploit spatial externalities and other economies

of density. What are the source of economies of density? Where do cities

emerge in space? Some locations can be clearly linked to natural advantages,

whereas others seem to be the outcome of historical accidents.

We build a continuous-space theory of trade to explain why and where

people agglomerate. There are two forces of agglomeration in our model.

First, people move close to trading opportunities to minimize transportation

cost. Second, they strive to exploit economies of density in transportation

technology. To understand the second motive, consider choosing a location

next to a river dividing two productive regions. If the river is easily naviga-

ble, boats may provide a suitable means of transport between the regions.

As economies of scale in boating are small, traders have no incentive to ag-

glomerate and can trade from small villages along the river. By contrast, if

the river is less navigable, one has to build a bridge to cross it. Bridges bring

about clear economies of density as locations close to the bridge will have

lower trade costs with the other side. Traders agglomerate near the bridge,

and a trading city emerges.

In our model, people choose their location on a homogeneous plane di-

vided by a single linear feature (a “river”). The two sides of the river differ

in comparative advantage, providing an incentive to trade across the river.

Trading, however, is costly. The cost increases in the distance travelled,

and crossing the river entails additional costs. The river can be crossed in

two ways: by boat at any point, and on existing bridges for a lower cost.

For a given set of bridges, we study the patterns of specialization and the

distribution of population (and economic activity) in space.

Our model leads to a number of equilibrium predictions about rivers,

bridges, and population density. First, population density declines with dis-

tance to the river. Second, along the river, population density declines with

distance to closest bridge. Third, population is more clustered along the river
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than far from the river. Fourth, along the river, the population densities on

the right and the left bank are positively correlated. Fifth, this correlation

is smaller within the neighborhood of bridges.

Our work is motivated by the historical relevance of crossing points, of-

ten referenced in city names, such as Oxford and Cambridge. Although the

emergence of such crossing points is not exogenous, they may lead to fur-

ther and faster economic development and agglomeration. Writing about

the Upper Black Eddy–Milford bridge on the Delaware, built in 1842, Dale

(2003, p. 43) concludes that “[t]his new crossing brought additional busi-

ness to this part of the river valley. It gave farmers and small industrualists

in the area quick access to the Delaware Canal in Pennsylvania. And this

increased use brought additional funds in the form of dividends to the stock-

holders of the Upper Black Eddy-Milford Bridge. By 1844, business in the

now growing town of Milford included three stores, three taverns, twelve to

fiteen mechanics’ shops, a flour mill, and two new sawmills that made lum-

ber trade, here, an especially important business. The town also had many

non-commercial structures, including forty-five homes, two churches, and a

fine school. Upper Black Eddy on the Pennsylvania side of the river directly

opposite Milford was a favorite stop for timber raftsmen in the early days. By

the mid-nineteenth century the bridge brought even more business. Upper

Black Eddy was booming, too. It had forty houses, three hotels, and several

stores and shops.”

To evaluate the model more systematically, we test its predictions on six

major North American rivers: the Hudson, the Delaware, the Mississippi,

the Missouri, the Ohio, and the Tennessee. In doing so, we rely on high-

resolution population density data, the precise path of rivers and the locations

of bridges.

First, we estimate how population density varies with distance to the

river and distance to the nearest bridge. It declines with distance to the

Hudson, the Mississippi, the Missouri, the Ohio, and the Tennessee, but not
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with distance to the Delaware. Except for the Hudson, population density

declines with distance to the nearest bridge on the other five rivers.

Second, we check whether population is more clustered at the river. We

calculate the coefficient of variation of population density within 10 miles

of the river, and find that it is higher than between 20 and 30 miles from

the river. That is, there is more variation in population along the river than

inland, as predicted by the model.

Third, we measure the correlation of population densities between the

left and the right bank with and without taking bridges into account. For all

six rivers, the correlation between the two banks is strongly positive (with

an average of 0.48), suggesting that people agglomerate near the same points

on either side of the river. When looking at bridges only, however, we find

that correlations are substantially lower (average 0.37) between the two sides

of the bridge. This is consistent with the model, where population density

is a decreasing function of trade costs. Moving away from a bridge along

the river, trade costs increase both on the left and on the right bank of

the river, leading to a comovement in population density across the two

banks. Therefore, starting from a bridge, the longer the interval over which

we calculate the correlation coefficient, the larger value we find.

Our paper is related to two strands of the literature. First, it is re-

lated to an increasing number of papers which model space as ordered and

continuous – a much more realistic assumption than the ones used in classi-

cal economic geography models. Rossi-Hansberg (2005), Desmet and Rossi-

Hansberg (2012), and Coşar and Fajgelbaum (2012) characterize the spatial

distribution of economic activity over a line segment in Ricardian models

with agglomeration externalities. Fabinger (2011) and Allen and Arkolakis

(2013), on the other hand, examine the implications of neoclassical models

with CES preferences on the geographic distribution of economic activity. All

of these papers come to the conclusion that lower-dimensional trade barriers

and trade infrastructure – ports in Coşar and Fajgelbaum (2012), borders in
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Rossi-Hansberg (2005) and Fabinger (2011), and highways and waterways in

Allen and Arkolakis (2013) – might have a significant impact on how popula-

tion, income, and other relevant economic variables are distributed in space.

In most of the cases, trade infrastructure has an agglomeration-creating ef-

fect since people want to exploit spatial proximity to trading opportunities,

while trade barriers repel agglomeration in these models.1 Our main contri-

bution to this literature is that, to the best of our knowledge, we are the first

to study the role of bridges, or other point-like transport infrastructure, in

creating agglomeration.

The second literature related to this paper studies the role of transport

infrastructure in development in more empirical settings. Donaldson (2012)

and Donaldson and Hornbeck (2012) come to the conclusion that the ex-

pansion of railroads in the 19th century was a crucial determinant of local

development in India and the U.S., respectively. Baum-Snow et al. (2012)

and Duranton et al. (2012), on the other hand, find that highways have been

playing an important role in city development in China and the U.S. The fact

that these effects are likely to be long-lasting is pointed out by Bleakley and

Lin (2012), who find that pre-19th-century portage sites remain population

centers, despite the fact that their advantage in transportation have been ob-

solete for long. Relative to this second strand of the literature, we identify a

new mechanism for agglomeration. In these papers, transport infrastructure

is assumed to reduce trade costs, but is not a source of agglomeration itself.

In our model, bridges not only make trade between two regions cheaper, but

also serve as focal points of agglomeration.

The structure of the paper is as follows. Section 2 describes the model

together with the set of predictions that the model provides, while Section 3

presents the data, the empirical strategy, and the results. Section 4 concludes.

1Rossi-Hansberg (2005), however, points to a case in which more trade restrictions on
the border are responsible for creating agglomeration.
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2 A model of trading across a river

We model production and trade in continuous space. There are a continuum

of workers freely choosing location on a plane that is separated by a river.

They produce two goods, using land and their labor. The two sides of the

river differ in relative productivities, leading to Ricardian gains from trade

across the river. There are no gains from within-region trade. (Most of our

results survive if all agents specialize fully, such as in Allen and Arkolakis,

2013.) Transportation is costly, giving incentives to move close to trade

opportunities.

We study how the relative price of the two goods varies in space, and the

patterns of specialization and agglomeration. For a fixed set of bridges, we

derive a handful of predictions on the equilibrium distribution of population

around the river and bridges.

2.1 Geography

Space is continuous. We concentrate on a compact and connected subset S

of the sphere that represents the globe. A circle segment called the river

divides S into two parts: the Home country (H) and the Foreign country

(F ) – see Figure 1.2 Locations (i.e., points in S) are indexed by the triplet

(C, `, h), where C ∈ {H,F} is the country which the location belongs to, `

is the distance of the location from the river, and h is the distance of the

location from an arbitrarily chosen circle h = 0 that is perpendicular to the

river. (In other words, h represents the river mile.) For simplicity, we refer

to ` as “longitude,” and to h as “latitude.” Finally, there is a finite set of

latitudes h1, . . . , hB at which bridges span the river.

2A circle on the sphere is equivalent to a straight line on the plane: it is the shortest
path between any two points that lie on it. Also notice that the river is assumed to
have zero width. However, this assumption is without loss of generality because the only
relevant geographical feature of the river in our model is the cost of crossing it, which is
given exogenously.
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Figure 1: Geography of the river

There are two goods, denoted by X and M . Shipment of goods is costly.

Land shipping of good i involves an iceberg cost of etid, where ti is a positive

constant, and d is total distance traveled. Crossing the river entails additional

costs. The river can be crossed in two ways: (1) by boat at any point, at an

iceberg cost of eτ
0
i , or (2) through bridge b ∈ {1, . . . , B}, at an iceberg cost

of eτ
b
i , where τ 0i , τ

b
i > 0, and the value of τ bi can potentially vary with b.

Productivity is distributed evenly within countries, but can differ across

countries. Let aCi be the unit cost of production in sector i ∈ {X,M} of

country C ∈ {H,F}. Then the autarky price of the X-good relative to the

M -good is given by pCA =
aCX
aCM

in country C.

Finally, the spatial distribution of factor endowments is as follows. There
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is a mass of NC workers in country C, each of them supplying one unit of

labor inelastically. Workers are freely mobile within countries, but cannot

migrate from one country to the other. Also, each location (C, `, h) is endowed

with a strictly positive amount of land λ (C, `, h). Land is owned by local

landlords.

2.2 Consumption

Workers have Cobb–Douglas preferences over goods X and M , spending

half of their income on each good. Therefore, the representative worker at

location (C, `, h) has indirect utility

u (C, `, h) =
w (C, `, h)

PX (C, `, h)
1
2 PM (C, `, h)

1
2

, (1)

where w (C, `, h) is the wage at (C, `, h), and PX (C, `, h) and PM (C, `, h) are

the local prices of the X- and M -goods, respectively. Within each country,

workers move to the location at which their indirect utility is largest.

Landlords have the same preferences as workers. Landlords are immobile,

and do not work. We assume that the number of landlords is small enough

that we can approximate total population by the number of workers at each

location.

2.3 Production

Both goods are produced under constant returns to scale, using labor and

land. The production function is Cobb–Douglas with an α share of labor in

both sectors. Both sectors are characterized by perfect competition at each

location. Therefore, a firm that operates in the i-sector at (C, `, h) solves the

problem

max
ni(C,`,h)

Pi (C, `, h)
ni (C, `, h)α

aCi
− w (C, `, h)ni (C, `, h)− r (C, `, h) ,
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where ni (C, `, h) is labor usage per unit of land, and r (C, `, h) is the rent

per unit unit of land.

The first-order condition to the firm’s maximization problem implies

ni (C, `, h) = α
1

1−α
(
aCi
)− 1

1−α

[
Pi (C, `, h)

w (C, `, h)

] 1
1−α

. (2)

Hence, if a good is produced at location (C, `, h), then the mass of workers

in the good’s production is positively linked to the good’s local price relative

to the nominal wage.

2.4 Equilibrium

Now we define a competitive equilibrium in this economy.

Definition 1. An equilibrium is a set of functions PX , PM , nX , nM , n, λX ,

λM , w and r, as well as real wages uH and uF such that

(1) utility of workers is maximized and equalized across locations:

w (C, `, h)

PX (C, `, h)
1
2 PM (C, `, h)

1
2

= uC

for all C ∈ {H,F}, `, and h,

(2) profits are maximized and driven down to zero:

Pi (C, `, h)
ni (C, `, h)α

aCi
− w (C, `, h)ni (C, `, h)− r (C, `, h) = 0

for all C ∈ {H,F}, `, and h,

(3) local land markets clear:

λX (C, `, h) + λM (C, `, h) = λ (C, `, h)

for all C ∈ {H,F}, `, and h, where λi (C, `, h) denotes local land usage by
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sector i,

(4) local and global labor markets clear:

λX (C, `, h)nX (C, `, h) + λM (C, `, h)nM (C, `, h)

λ (C, `, h)
= n (C, `, h)∫

C

λ (C, `, h)n (C, `, h) ds = NC

for all C ∈ {H,F}, `, and h,

(5) there is no arbitrage possibility within countries:

Pi (C, `, h) ≤ etid[(C,`,h),(C,`
′,h′)]Pi (C, `

′, h′)

for all (C, `, h) and (C, `′, h′), where d [(C, `, h) , (C, `′, h′)] denotes the dis-

tance between the two locations, and we have equality if (C, `′, h′) ships good

i through (C, `, h),

(6) there is no arbitrage possibility over the river:

Pi (C, 0, h) ≤ eτ
0
i Pi (C

′, 0, h)

for all C, C ′ and h, and we have equality if country C ′ exports good i at h

by boat,

(7) there is no arbitrage possibility over bridges:

Pi (C, 0, hb) ≤ eτ
b
i Pi (C

′, 0, hb)

for all C, C ′ and b ∈ {1, . . . , B}, and we have equality if country C ′ exports

good i through bridge b,

(8) trade is balanced between each pair of locations.

Let us introduce the notation p (C, `, h) = PX(C,`,h)
PM (C,`,h)

, that is, p (C, `, h) is

the relative price of the X-good at location (C, `, h). What is the pattern of

specialization in equilibrium? By constant returns to scale, this only depends
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on the relationship between the equilibrium relative price and the autarky

relative price. In particular,

• (C, `, h) is fully specialized in good X if p (C, `, h) > pCA, implying

n (C, `, h) = nX (C, `, h),

• (C, `, h) is fully specialized in good M if p (C, `, h) < pCA, implying

n (C, `, h) = nM (C, `, h),

• if (C, `, h) is incompletely specialized, then p (C, `, h) = pCA, and n (C, `, h) =

nX (C, `, h) = nM (C, `, h) by (2).

Also notice that, due to trade costs, any location that is incompletely

specialized is necessarily in autarky: a consumer at such a place would never

find it optimal to buy any of the two goods from another location.

We assume that Home has a comparative advantage in X. In other words,

no Home location specializes in good M , and no Foreign location specializes

in good X. Given the trade costs, a sufficient condition for this is

pHA < pFAe
−max{maxb(τbX+τbM),τ0X+τ0M}.

Also notice that there can be no within-country trade in equilibrium: loca-

tions that are in autarky do not trade at all, whereas locations specialized in

the country’s export good only trade with the other country.

We then have the following proposition that is a generalization of Propo-

sition 2 in Coşar and Fajgelbaum (2012).

Proposition 1. In any equilibrium, each country C is a union of two disjoint

sets (”regions”) TC and AC such that

(i) all locations in region TC trade with the other country,

(ii) all locations in region AC that are not on the boundary of TC are in

autarky, and
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(iii) locations in AC that are on the boundary of TC are indifferent between

trade and autarky.

Moreover, for each country C and latitude h, there exists a longitudề(C, h) such that (C, `, h) ∈ TC for all ` < ̂̀(C, h), and (C, `, h) ∈ AC for

all ` > ̂̀(C, h).

Proof. See Appendix.

Figure 2 is a graphical illustration of Proposition 1. As one can see, lo-

cations in the trading region TC are closer to the river than locations in the

autarky region AC for each latitude.

Figure 2: Spatial specialization

Combining equations (1) and (2), and using the equalization of utility in

equilibrium, we can relate the equilibrium spatial distribution of population
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to the equilibrium spatial distribution of relative prices:

n (H, `, h) = nX (H, `, h) = α
1

1−α
(
uHaHX

)− 1
1−α p (H, `, h)

1
2(1−α) (3)

and

n (F, `, h) = nM (F, `, h) = α
1

1−α
(
uFaFM

)− 1
1−α p (F, `, h)−

1
2(1−α) . (4)

That is, within-country differences in population density are solely driven

by differences in the relative price. At Home, locations that have a high p

offer a high price of the export good and a low price of the import good.

Hence, many people decide to move to these locations. On the contrary, a

location with a high p is not attractive in the Foreign country; thus, such

locations are characterized by low population density in equilibrium.

Using equations (3) and (4), the model generates two predictions on the

distribution of population, summarized in Propositions 2 and 3.3

Proposition 2 (Concentration at the river). Take a country C, and restrict

attention to a “rectangular” subset of locations
{

(C, `, h) : ` ≤ ` ≤ `, h ≤ h ≤ h
}
⊂

C. Then average population density of locations at distance ` from the river

is at least as high as average population density of locations at distance `′ > `

from the river.

Proposition 3 (Concentration at bridges). In any country C, take two

locations (C, `, h) and (C, `′, h′) which trade over the same bridge. Then

n (C, `, h) > n (C, `′, h′) if and only if (C, `, h) is closer to the bridge than

(C, `′, h′). As a consequence, locations at bridges over which trade takes place

are the only local maxima of n (C, `, h) if boat trade is prohibitively costly.

3The Appendix contains the proofs of these propositions.
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2.5 Random variations in productivity

This section presents a generalization of the model in which productivity is

not necessarily evenly distributed within countries. We do this to account

for idiosyncratic variation in population density in equilibrium.

Let ai (C, `, h) be the unit cost of production in sector i ∈ {X,M} at lo-

cation (C, `, h). We assume that ai (C, `, h) are random variables, each with

marginal cdf GC
i (·), but not necessarily independent. That is, our specifi-

cation allows for both spatial and cross-industry correlation of productivity

draws. Finally, we assume that GH
M (·) and GF

X (·) are such that Home loca-

tions specialize in the X-good, and Foreign locations specialize in the M -good

with probability one.4

Under these assumptions, equations (3) and (4) can be written as

n (H, `, h) = nX (H, `, h) = α
1

1−α
(
uH
)− 1

1−α aX (H, `, h)−
1

1−α p (H, `, h)
1

2(1−α)

(3’)

and

n (F, `, h) = nM (F, `, h) = α
1

1−α
(
uF
)− 1

1−α aM (F, `, h)−
1

1−α p (F, `, h)−
1

2(1−α) .

(4’)

Equations (3’) and (4’) imply that Propositions 2 and 3 still hold in

expectation, i.e., if one replaces “population density” at a given location,

n (C, `, h), by “expected population density” at the location, En (C, `, h).

Generalizing the distribution of productivitycomes at the expense of more

restrictions on geographical structure. First, we assume that the two coun-

tries are mirror images of each other, that is, (1) (H, `, h) ∈ H if and only

if (F, `, h) ∈ F for all ` and h, (2) Home and Foreign are endowed with the

same number of workers (NH = NF ), (3) the distribution of land is such

that λ (H, `, h) = λ (F, `, h) for all ` and h. Second, we assume that the

4The easiest way to satisfy this restriction is to assume that aM (H, `, h), or aX (F, `, h),
or both, are “very large” with probability one.
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productivity of the good the country specializes in (good X at Home, and

good M in Foreign) is drawn from the same distribution in the two countries,

that is, GH
X (·) = GF

M (·). Third, we assume that trade over every bridge has

the same iceberg cost: τ bi = τi, and boat trade is prohibitively costly.

Under these assumptions, one can show that the distribution of relative

prices along the river takes the form

p (H, 0, h) = e2p−(tX+tM )δ(h)

p (F, 0, h) = e2p+τX+τM+(tX+tM )δ(h),

where p is a constant, and δ (h) denotes the distance of location (0, h) from

the closest bridge. Denote τ = τX+τM
2

and t = tX+tM
2

. Then (3’) and (4’)

yield, in logs,

log n (H, 0, h) =
1

1− α
[
logα− log uH + p− log aX (H, 0, h)− tδ (h)

]
log n (F, 0, h) =

1

1− α
[
logα− log uF − p− τ − log aM (F, 0, h)− tδ (h)

]
.

Therefore,

Cov [log n (H, 0, h) , log n (F, 0, h)] =
1

(1− α)2
[
CLR + t2Var [δ (h)]

]
where CLR = Cov [log aX (H, 0, h) , log aM (F, 0, h)] is the covariance between

productivity realizations of the two banks of the river. Now since

Var [log n (H, 0, h)] =
1

(1− α)2
[
σ2 + t2Var (δ (h))

]
= Var [log n (F, 0, h)]

where σ2 is the common variance of log aX (H, 0, h) and log aM (F, 0, h), we

obtain that the correlation between left- and right-bank log population den-

sity is

ρ =
CLR + t2Var [δ (h)]

σ2 + t2Var [δ (h)]
= 1− σ2 − CLR

σ2 + t2Var [δ (h)]
. (5)
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This equation allows us to provide the following two predictions on the

distribution of population along the river.

Proposition 4 (Left- and right-bank density positively correlated). If left-

and right-bank log productivities are positively correlated or uncorrelated, then

the correlation between left- and right-bank log population density is positive.

Proof. If log productivities are positively correlated or uncorrelated, then

CLR ≥ 0. Then equation (5) immediately implies

ρ ≥ 1− σ2

σ2 + t2Var [δ (h)]
> 0.

Proposition 5 (Lower correlation at bridges). The correlation between left-

and right-bank population density is lower at (trading) bridges than in gen-

eral.

Proof. Calculating the correlation coefficient at trading bridges only, we find

ρbridges = 1− σ2 − CLR
σ2

=
CLR
σ2

because δ (h) ≡ 0, hence Var [δ (h)] = 0 in this case. ρbridges < ρ follows from

comparing this to equation (5).

The intuition for Proposition 5 is as follows. As we move away from a

bridge along the river, trade costs increase by as much on the left bank as

on the right bank of the river. This leads to a comovement in the terms of

trade (p in Home, and p−1 in Foreign) on the two banks, and hence to a

comovement in Home and Foreign population density (which are increasing

power functions of the terms of trade). This comovement in densities acts

against the variation caused by fluctuations in productivity. Thus, starting

from a bridge, the longer the interval over which we calculate the correlation

coefficient, the larger value we find for ρ.
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Notice that the existence of bridges over which trade takes place is crucial

for this result: the above mentioned comovement in trade costs is absent

whenever people trade by boat, or are in autarky. Hence, the fact that this

prediction is verified in the data can be taken as a clear indication that

bridges matter for the spatial distribution of economic activity.

3 Rivers and population density

We test the model’s predictions on six major North American rivers, the

Delaware, the Hudson, the Mississippi, the Missouri, the Ohio and the Ten-

nessee.

3.1 Mapping model to data

In the model, each location is on either side of the river is characterized by

two coordinates: its distance from the river (longitude) and its distance along

the river from a chosen rivermile (latitude). In reality, rivers are not straight

lines. To calculate these two relevant coordinates, we proceed as follows.

Let river R : R → R2 be a parametric curve mapping rivermiles into

points ons the plane. R(0) is the vector of geocoordinates of the river’s

mouth, R(1) is the geocoordinate of the first rivermile, etc. For any point

(x, y), we can determine the river-coordinates as follows

`(x, y, R) ≡ min
m

d[(x, y), R(m)],

h(x, y, R) ≡ arg min
m

d[(x, y), R(m)],

where d : R4 → R+ measures the distance between a pair of points.

That is, distance is measured as distance to the nearest point of the river,

and h is measured as the rivermile of this neaerst point. For straight rivers,

these measures exactly correspond to the ones used in the model.
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Note that the (x, y) → (`, h) mapping is not a bijection. While there

is only one nearest point with probability one, there may be multiple (x, y)

points on the plane for which m is the closest rivermile.

The use of this mapping is illustrated in Figure 3, which plots popu-

lation density on the left and right bank of the Delaware as a function of

rivermiles. The high-density areas of Philadelphia (mostly right bank) and

Trenton (mostly left bank) are clearly visible.

Figure 3: Bridges and population density on the two banks of the Delaware

3.2 Data

To measure population density, we use Version 1 of the Global Rural-Urban

Mapping Project population density grid. This dataset provides population

count (and density) estimates for each 30 arc-second by 30 arc-second gridcell

of the U.S. (The are of these gridcells is around 0.25 km2.) We use the values

from year 2000.

We take the geocoordinates of rivers from the ESRI Map of U.S. Major

Waters, containing polygons of 29,167 water surfaces, including rivers and

lakes. We selected the Delaware, the Hudson, the Mississippi, the Missouri,

the Ohio and the Tennessee. After making the necessary topological correc-

tions (connecting segments of the river and intermittent lakes), we determine
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the left and right bank of each river. For the Delaware, we exclude Philadel-

phia and for the Hudson, we exclude New York City from the analysis. Our

results are stronger with these cities included.

The location of major bridges comes from Wikipedia. For the Delaware,

we have more detailed data on bridges, including year of construction. Figure

4 shows the location of the rivers, the bridges, and the population density

map of the United States.

Figure 4: Map of the six rivers, their bridges, and population density

3.3 Testing the five predictions

Table 1: Population density and distance to the river
Distance to river

Page 1

Population density

River 0-10mi 10-20mi 20-30mi

Delaware* 467 592 566

Hudson** 585 236 245

Mississippi 137 81 35

Missouri 136 84 37

Ohio 452 196 173

Tennessee 247 155 97

* excluding Philadelphia

** excluding NYC
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Table 1 shows how population density varies with distance to the six

major rivers. We measure population density within 10-miles bands along

the river. On five out of the six rivers, population density between 10 and 20

miles from the river is strictly lower than within 0 and 10 miles, and on four

rivers, it further reduces as we move farther away to 20 to 30 miles. This is

consistent with the model, where trading opportunities on the other side of

the river lead to a density gradient.

The exceptions are the Delaware and the Hudson, where population den-

sity does not show a clear declining pattern. The two rivers are very close to

each other, and their 30-mile neighborhood may be affected by the metropoli-

tan areas of New York City and Philadelphia.

Table 2: Population density and distance to the nearest bridgeDistance to bridge

Page 2

River

Delaware* -0.353

Hudson** 0.177

Mississippi -0.429

Missouri -0.501

Ohio -0.504

Tennessee -0.404

* excluding Philadelphia

** excluding NYC

Correlation of log population 
density with distance to 

nearest bridge

Table 2 shows the correlation coefficient of log population density along

the river with distance to the nearest bridge. With the exception of the

Hudson, the other five rivers display very strong negative correlation. In the

model, as bridges are the focal points of agglomeration, population density

falls with distance, consistently with the facts.

Figures B1 through B6 (in the Appendix) plot the distribution of pop-

ulation density near and away from bridges. For each river, the red line

plots the kernel density of log population densities at gridcells that have a
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bridge within 3 miles. (We calculated average population density between 0

and 10 miles from the river.) The blue line plots the kernel estimate of log

population densities for gridcells more than 3 miles from a bridge.

For all rivers except the Hudson, the distribution of population densities

near bridges is shifted to the right. That is, average population density

is higher within 3 miles of the bridge than outside this distance. (This is

consistent with the correlations reported in Table 2.)

We also see that there is a large variation in population densities both near

and away from bridges. In particular, some locations without a bridge are

as densely populated as some of those with one. This suggests that building

bridges involves nontrivial costs, and not every community can overcome

these costs, severly limiting their access to the other side of the river.

Table 3: Clustering close and far from the river
Clustering

Page 3

River 0-10mi 10-20mi 20-30mi

Delaware* 1.509 1.745 0.847

Hudson** 1.586 2.265 1.461

Mississippi 3.256 3.161 1.564

Missouri 4.011 3.176 2.008

Ohio 2.509 2.259 1.419

Tennessee 1.886 1.854 0.990

* excluding Philadelphia

** excluding NYC

Coeffcient of variation of population density 
(left bank)

Table 3 displays a measure of clustering at various distances to the river.

We calculate the coefficient of variation of population density. This measure

is high when population density varies a lot, between, say, a large a city and

sparse surroundings. It is low when many small cities or towns are roughly

evenly distributed in space. Note that the coefficient of variation is unaffected

by the overall mean population density, which we have reported in Table 1.

As we move farther away from the river, the coefficient of variation tends

to fall. This is in line with our theory, where the agglomerating force of
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bridges can only be felt close to the river, and not farther from where multiple

bridges are equally easily accessible.

Table 4: Correlation between the two banks of the river
Correlation

Page 4

River

Delaware* 0.567

Hudson** 0.416

Mississippi 0.558

Missouri 0.317

Ohio 0.483

Tennessee 0.510

* excluding Philadelphia

** excluding NYC

0.4751666667

Correlation of population 
density between left and 

right bank

Table 4 reports the correlation of population density between the left and

the right bank of the river. The model predicts that population is going to

cluster on both sides of the bridge, leading to positive correlation across the

two banks. On all six rivers, the correlation is highly positive, with an average

of 0.48. Part of this correlation is driven by the mere presence of bridges.

Bridges are surrounded by people on either side of the river, whereas areas

far from bridges tend to be more sparse. Table 5 measures this correlation

at the bridges. More specifically, we ask how population on the two sides of

the bridge is correlated. As predicted by the model, these correlations are

positive, but smaller than the unconditional correlations.5

4 Conclusion

We built a continuous-space theory of trade to explain why and where people

agglomerate. We tested the equilibrium predictions of our model on data

5The results are very similar if we use log population density when calculating correla-
tions.
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Table 5: Correlation between the two sides of bridges

Correlation-at-bridges

Page 5

River

Delaware* 0.399

Hudson** 0.251

Mississippi 0.551

Missouri 0.251

Ohio 0.465

Tennessee 0.281

* excluding Philadelphia

** excluding NYC

0.3663333333

Correlation of population 
density on either side of 

bridge

from six major American rivers, finding that spatial patterns of population

density are consistent with our model.

Taken together with agglomeration externalities (not currently modeled),

our theory can relate to the question of whether and how trade causes devel-

opment. There are two puzzling facts about trade and development. First,

the macro correlations between trade and development (even those using

plausibly exogenous variation in trade, as Feyrer, 2009a and b) are much

larger than model-based meausures of gains from trade (Alvarez and Lucas,

2007, Arkolakis, Costinot and Rodŕıguez-Clare, 2012). Second, land-locked

countries are much less developed than coastal countries, even though trans-

portation costs make up only a small fraction of broader trade costs (Ander-

son and van Wincoop, 2004).

Our theory has the potential to explain these facts because trade increases

the incentives to agglomerate, which leads to external effects. These external

effects represent a multiplier of trade on development (consistent with Fact

1). They are also stronger in coastal countries, where ports provide a natural

focal point of agglomeration (consistent with Fact 2).

In future work, we intend to estimate the agglomeration effect of bridges.

The crucial identification concern is that both the location of bridges and
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population density are correlated with unobserved local amenities. We plan

to use variation in building costs (geographical and hydrological measures)

and transit traffic demand to instrument bridge location.
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Appendix

A Proofs

We first state the following lemma that we use in the proofs of Propositions

1 and 2.

Lemma 1. Take two locations (C, `, h) and (C, `′, h) such that `′ > `. Then

p (C, `′, h) ≤ p (C, `, h) if C = H, and p (C, `′, h) ≥ p (C, `, h) if C = F .

Lemma 1. We prove the lemma for C = H; the proof for C = F involves

the exact same steps. Notice first that p (H, `, h) ≥ pHA and p (H, `′, h) ≥
pHA by the assumption that no Home location specializes in good M . If

p (H, `′, h) = pHA , then the result is immediate. So suppose p (H, `′, h) > pHA .

Then (H, `′, h) is fully specialized in X, and trades with the Foreign country.

As a consequence, there must exist a location at the river
(
H, 0, ĥ

)
such that

(H, `′, h) trades through it.

Equilibrium condition (5) then implies

PX

(
H, 0, ĥ

)
= etXd[(H,0,ĥ),(H,`

′,h)]PX (H, `′, h)

and

PM

(
H, 0, ĥ

)
= e−tMd[(H,0,ĥ),(H,`

′,h)]PM (H, `′, h) .

Dividing these two equations yields

p
(
H, 0, ĥ

)
= e(tX+tM )d[(H,0,ĥ),(H,`′,h)]p (H, `′, h) . (6)

Similarly, by equilibrium condition (5),

PX

(
H, 0, ĥ

)
≤ etXd[(H,0,ĥ),(H,`,h)]PX (H, `, h)

and

PM

(
H, 0, ĥ

)
≤ e−tMd[(H,0,ĥ),(H,`,h)]PM (H, `, h) ,
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irrespectively of whether
(
H, 0, ĥ

)
and (H, `, h) trade or not. Dividing the

last two inequalities, we get

p
(
H, 0, ĥ

)
≤ e(tX+tM )d[(H,0,ĥ),(H,`,h)]p (H, `, h)

≤ e(tX+tM )d[(H,0,ĥ),(H,`′,h)]p (H, `, h) ,

where the second inequality follows from `′ > `. Combining this with equation

(6) and cancelling e(tX+tM )d[(H,0,ĥ),(H,`′,h)] on both sides yields the result.

Now we are ready to prove Propositions 1 to 3.

Proposition 1. Define

TC =
{

(C, `, h) : p (C, `, h) 6= pCA
}
,

and

AC =
{

(C, `, h) : p (C, `, h) = pCA
}
.

C = TC ∪AC and TC ∩AC follow directly from the definitions. To see (i),

notice that p (C, `, h) 6= pCA necessarily implies that location (C, `, h) is fully

specialized, hence it trades with the other country.

For (ii), suppose that a location (H, `, h) from the interior of AH is not

in autarky, thus it trades with the Foreign country. Then there must exist

another location (H, `′, h′) ∈ AH such that location (H, `, h) trades through

it. By equilibrium condition (5), this implies

p (H, `′, h′) = p (H, `, h) e(tX+tM )d[(C,`,h),(C,`′,h′)] > p (H, `, h) ,

which contradicts the fact that p (H, `′, h′) = p (H, `, h) = pHA . The argument

is similar for C = F .

For (iii), we first prove that p (C, ·, ·) is a continuous function. By equi-
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librium condition (5), we have

p (C, `, h) ≤ p (C, `′, h′) e(tX+tM )d

and

p (C, `′, h′) ≤ p (C, `, h) e(tX+tM )d

for any (C, `, h) and (C, `′, h′), where d := d [(C, `, h) , (C, `′, h′)]. Combining

these two inequalities yields

e−(tX+tM )d ≤ p (C, `, h)

p (C, `′, h′)
≤ e(tX+tM )d.

Hence, in the limit as (C, `′, h′) → (C, `, h) (and thus d → 0), we obtain
p(C,`,h)
p(C,`′,h′)

→ 1, that is, p (C, `′, h′) → p (C, `, h). This proves that p (C, ·, ·) is

continuous.

Now pick a location (H, `, h) ∈ AH that is on the boundary of TH ; the

proof is similar for C = F . Clearly, location (H, `, h) weakly prefers autarky

over trade as p (H, `, h) = pHA . Assume that (H, `, h) strictly prefers au-

tarky over trade; this means p (H, `, h) > p (H, `′, h′) e−(tX+tM )d[(C,`,h),(C,`′,h′)]

for all trading locations (H, `′, h′) ∈ TH . However, by the compactness and

connectedness of C, there exists a sequence of locations
{

(H, `m, hm) ∈ TH
}

converging to (H, `, h). By continuity of p (C, ·, ·), there must exist a large

enough m such that p (H, `m, hm) > p (H, `′, h′) e−(tX+tM )d[(C,`,h),(C,`′,h′)], im-

plying that (H, `m, hm) prefers autarky over trade. But this contradicts the

fact that (H, `m, hm) ∈ TH .

For the final part, let ̂̀(C, h) = sup`
{

(C, `, h) ∈ C : p (C, `, h) 6= pCA
}

if

there exists an ` such that p (C, `, h) 6= pHA , and ̂̀(C, h) = 0 otherwise. Then

Lemma 1 implies that p (H, `, h) > pHA if ` < ̂̀(H, h), hence (H, `, h) ∈ TH ;

and p (H, `, h) = pHA if ` > ̂̀(H, h), hence (H, `, h) ∈ AH . For Foreign,

` < ̂̀(F, h) implies p (F, `, h) < pFA, so (F, `, h) ∈ T F ; and ` > ̂̀(F, h)

implies p (F, `, h) = pFA, so (F, `, h) ∈ AF . This concludes the proof.
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Proposition 2. Average population density at distance ` from the river is

∫ h

h

n (C, `, h) dS (C, `, h) ,

and average population density at distance `′ is

∫ h

h

n (C, `′, h) dS (C, `′, h) .

Suppose C = H. Then, by Lemma 1, p (C, `, h) ≥ p (C, `′, h), which,

together with equation (3), implies n (C, `, h) ≥ n (C, `′, h) for all h ∈
[
h, h
]
.

As a consequence,

∫ h

h

n (C, `, h) dS (C, `, h) ≥
∫ h

h

n (C, `′, h) dS (C, `′, h) .

Now suppose C = F . Then Lemma 1 implies p (C, `, h) ≤ p (C, `′, h), so

by equation (4), n (C, `, h) ≥ n (C, `′, h) for all h ∈
[
h, h
]
. Hence,

∫ h

h

n (C, `, h) dS (C, `, h) ≥
∫ h

h

n (C, `′, h) dS (C, `′, h) .

Proposition 3. If C = H, and (C, `, h) and (C, `′, h′) both trade over bridge

b, then we have

p (C, 0, hb) = p (C, `, h) e(tX+tM )d[(C,`,h),(C,0,hb)]

and

p (C, 0, hb) = p (C, `′, h′) e(tX+tM )d[(C,`′,h′),(C,0,hb)]

by equilibrium condition (5).

Then the fact that (C, `, h) is closer to the bridge than (C, `′, h′) is equiv-
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alent to p (C, `, h) > p (C, `′, h′), which, by equation (3), is equivalent to

n (C, `, h) > n (C, `′, h′).

If C = F , equilibrium condition (5) yields p (C, `, h) < p (C, `′, h′) if and

only if (C, `, h) is closer to the bridge than (C, `′, h′), which is equivalent to

n (C, `, h) > n (C, `′, h′) by equation (4).

B Additional Figures

Figure B1: The distribution of population densities near and far of bridges:
Delaware
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Figure B2: The distribution of population densities near and far of bridges:
Hudson

Figure B3: The distribution of population densities near and far of bridges:
Mississippi
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Figure B4: The distribution of population densities near and far of bridges:
Missouri

Figure B5: The distribution of population densities near and far of bridges:
Ohio
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Figure B6: The distribution of population densities near and far of bridges:
Tennessee
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